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ABSTRACT
BACKGROUND: Many studies report smaller hippocampal and amygdala volumes in posttraumatic stress disorder
(PTSD), but findings have not always been consistent. Here, we present the results of a large-scale neuroimaging
consortium study on PTSD conducted by the Psychiatric Genomics Consortium (PGC)–Enhancing Neuroimaging
Genetics through Meta-Analysis (ENIGMA) PTSD Working Group.
METHODS: We analyzed neuroimaging and clinical data from 1868 subjects (794 PTSD patients) contributed by 16
cohorts, representing the largest neuroimaging study of PTSD to date. We assessed the volumes of eight subcortical
structures (nucleus accumbens, amygdala, caudate, hippocampus, pallidum, putamen, thalamus, and lateral
ventricle). We used a standardized image-analysis and quality-control pipeline established by the ENIGMA
consortium.
RESULTS: In a meta-analysis of all samples, we found significantly smaller hippocampi in subjects with current PTSD
compared with trauma-exposed control subjects (Cohen’s d =20.17, p = .00054), and smaller amygdalae (d =20.11,
p = .025), although the amygdala finding did not survive a significance level that was Bonferroni corrected for multiple
subcortical region comparisons (p , .0063).
CONCLUSIONS: Our study is not subject to the biases of meta-analyses of published data, and it represents an
important milestone in an ongoing collaborative effort to examine the neurobiological underpinnings of PTSD and
the brain’s response to trauma.
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Posttraumatic stress disorder (PTSD) is a psychiatric condition
that develops in about 6% to 8% of the general population
following exposure to traumatic life events (1–3), with higher
rates in women (8% to 10% compared with 4% to 5% of men)
(1,3) and select populations such as military combat survivors
(19%) (4). With the rise in global terrorism and military conflict,
the public health impact of PTSD has attracted greater atten-
tion and fueled research on its neural and biological markers.
One key goal of research on the neurobiology of PTSD has
Published by Elsevier Inc on behalf of Society of Biological Psychi
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been to identify structural brain changes that are associated
with PTSD, and much of this work has focused on the volume
of the hippocampus and amygdala.

PTSD researchers have often focused on the hippocampus,
as it plays a central role in regulating stress hormones and
responses through the hypothalamic-pituitary-adrenal axis,
and because it is also susceptible to the toxic effects of
elevated glucocorticoids (5). Further, the hippocampus has
been implicated in the contextual modulation of behavior (6,7).
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With its role in fear learning and suppression of fear in safe
contexts, i.e., fear conditioning, extinction, and fear renewal,
the hippocampus is integral to widely accepted behavioral
models of PTSD (8,9). The amygdala is another subcortical
region that likely plays a key role in the pathophysiology of
PTSD. Animal models have established the role of the baso-
lateral amygdala in fear learning and the centromedial amyg-
dala in fear expression (10). The amygdala is hyperactive
during various behavioral paradigms tested in PTSD (11). In
addition, the amygdala is adjacent to the hippocampus, and
these two highly interconnected regions have strong evidence
of mutual modulatory influence, especially for emotional
memory (12).

Numerous studies have examined the relationship between
PTSD and the hippocampus and amygdala. Prior studies
typically found smaller hippocampal volume in PTSD (13–16),
but this has not been consistent (17–21). Evidence of altered
amygdala volume in PTSD has been even more equivocal, with
studies reporting both smaller (16) and larger (22) volumes.
Meta-analyses have more consistently reported PTSD-
associated reductions in hippocampal and amygdala volume
(23–26). One meta-analysis found an association between
PTSD and lower hippocampal volume (15 studies, n = 562),
and smaller-sample meta-analyses found smaller volumes for
the amygdala (7 studies, n = 320) (25). A more recent meta-
analysis found smaller volumes in the hippocampus (36
studies, n = 1623) and the amygdala (14 studies, n = 682),
although the association observed with the amygdala was
partially due to confounding with the effects of trauma expo-
sure (26). However, major limitations of these meta-analyses
include disparate image processing steps and the “file
drawer” problem, which refers to the tendency to publish only
those results that confirm an initial finding, while contradictory
and null results remain unpublished and relegated to the
investigator’s “file drawer.” Thus, previous meta-analyses have
been potentially subject to publication bias and spuriously
large effect sizes because they are based solely on published
results. In addition, there is limited evidence for altered vol-
umes of other subcortical structures. Previous studies showed
reduced caudate nucleus volume (27–29) and increased lateral
ventricle volume (30) in PTSD patients. Furthermore, a smaller
globus pallidus and thalamus were associated with more re-
experiencing of symptoms (31). It is unclear if the absence of
structural differences, limited sample size, or lack of interest in
these structures has led to the small number of reports on
subcortical structures other than hippocampus and amygdala.

Here, the Psychiatric Genomics Consortium [PGC]–
Enhancing Neuroimaging Genetics through Meta-Analysis
(ENIGMA) PTSD Working Group compared eight subcortical
structure volumes (nucleus accumbens, amygdala, caudate,
hippocampus, pallidum, putamen, thalamus, and lateral
ventricle) between PTSD patients and control subjects in the
largest PTSD neuroimaging study to date, including data from
1868 subjects from 16 cohorts. A major advantage of the
present study in comparison with previous meta-analyses
examining subcortical volume in PTSD is that all 16 sites
implemented a standardized image analysis and quality control
pipeline developed by the ENIGMA Consortium that has also
been used to identify associations between subcortical vol-
umes and major depressive disorder (32), bipolar disorder (33),
Biological Psy
obsessive-compulsive disorder (34), and schizophrenia (35),
thus avoiding potential noise introduced by varying neuro-
imaging processing methods across sites (36). Therefore, our
study design avoids many of the serious limitations of prior
meta-analyses that combined published summary statistics.

In addition to the main analysis of PTSD diagnosis, we
performed separate analyses examining variables that have
been hypothesized to influence the relationship between PTSD
and subcortical volume, including gender effects (25), civilian
versus military samples, childhood trauma (37), and alcohol
use disorder (AUD) (38).

METHODS AND MATERIALS

Samples

The ENIMGA-PGC PTSD Working Group includes 16 cohorts
from five countries, with neuroimaging and clinical data from
PTSD patients and control subjects with varying levels of
trauma exposure. Thirteen of the 16 sites exclusively used the
Clinician-Administered PTSD Scale to diagnose PTSD, and 12
sites assessed childhood trauma. Detailed demographic
information on each sample, including trauma exposure in the
control samples, may be found in Supplemental Table S1.
Further clinical information may be found in Supplemental
Table S2. In total, we analyzed data from 1868 subjects,
including 794 PTSD patients and 1074 control subjects.
Among these, 358 PTSD patients and 478 control subjects
came from military samples. The vast majority of participants
(751 PTSD patients and 934 control subjects) were adults.
Inclusion and exclusion criteria for each site may be found in
Supplemental Table S3. Harmonized scales of childhood
trauma and AUD were obtained from the sites (see the
Supplement). All participating sites obtained approval from
local institutional review boards and ethics committees. All
study participants provided written informed consent.

Imaging and Statistical Analysis

Quality control and processing of structural T1-weighted
magnetic resonance imaging scans was performed using
FreeSurfer (39) in conjunction with standardized ENIGMA
protocols. Our primary analysis was an examination of the
average volume of eight subcortical regions adjusting for age,
gender, and intracranial volume (ICV). Within each dataset,
linear models of average subcortical volumes (mean of left and
right) were fit as a function of current PTSD status, after
adjusting for effects of age, gender, ICV, and scanner for sites
with multiple scanner types. Details on scanners and acquisi-
tion parameters are provided in Supplemental Table S4. A
random-effects meta-analysis was used to combine results
across cohorts. Follow-up analyses included testing whether
the difference between the right and left volumes varied as a
function of case/control status (PTSD 3 hemisphere interac-
tion) and an analysis of the left and right volumes separately.
Cohen’s d effect size estimates and the percentage difference
in mean volume associated with PTSD are reported. Nominal
(uncorrected) p values are reported throughout. Cases in which
significance exceeds Bonferroni correction for the number of
volumes examined (.05/8 = .0063 in our primary analysis) are
noted. To avoid confusion, the same correction is employed in
chiatry February 1, 2018; 83:244–253 www.sobp.org/journal 245
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all post hoc analyses. Follow-up analyses examined potential
heterogeneity with meta-regression (see the Supplement),
separate analyses of men and women, and separate meta-
analyses of adult (nonpediatric), military, and civilian sam-
ples. In significantly associated regions, we additionally
analyzed PTSD symptom severity (normalized within site). To
examine the potential impact of depression comorbidity, we
performed an analysis of depression severity within PTSD
cases. Furthermore, we examined the impact of AUD and
childhood trauma levels, given their frequent co-occurrence
with PTSD and influence on subcortical volumes (40–42). We
also examined the presence/absence of childhood trauma
within PTSD cases, which was used as a proxy for timing of
trauma exposure.

RESULTS

Associations Between PTSD and Subcortical
Volumes

The results of our primary analysis of eight mean subcortical
volumes as a function of PTSD case/control status after
adjusting for age, gender, and ICV are presented in Figure 1
and Table 1, while the results of PTSD on ICV are presented
in Supplemental Table S5. The hippocampus and amygdala
were, on average, smaller in subjects with current PTSD (hip-
pocampus: d = 20.17, p = .00054; amygdala: d = 20.11, p =
.025). The hippocampus finding surpassed the corrected sig-
nificance threshold (p , .0063), but the amygdala did not
survive this multiple-comparisons correction. I2 and phet values
indicate low levels of heterogeneity across samples (Tables 1
and 2). We followed up these findings with an analysis of
current PTSD severity in samples for which severity data was
available. PTSD severity was significantly associated with
hippocampal volume (d = 20.15, p = .013), but not amygdala
volume (d = 20.087, p = .13).

A formal test of a differential effect of PTSD between
hemispheres was nonsignificant for all of the examined re-
gions. Our a priori specified separate analyses of left and right
subcortical volumes (after adjusting for age, gender, and ICV)
are presented in Figure 1 and Supplemental Table S6. Left and
right hemisphere effect size estimates had overlapping
246 Biological Psychiatry February 1, 2018; 83:244–253 www.sobp.or
confidence intervals supporting a lack of differential effect by
hemisphere. The association between PTSD and hippocampal
volume was evident in both hemispheres (p , .005, in each).
For the amygdala, the association with PTSD was borderline in
the right amygdala, passing p , .05, but not the Bonferroni-
corrected threshold (right amygdala: d = 20.12, p = .017; left
amygdala: d = 20.075, p = .13). In addition, the volume of the
left lateral ventricle (but neither the volume of right lateral
ventricle nor the total volume) was positively associated with
PTSD at nominal significance levels (d = 0.10, p = .036).

Examining Heterogeneity

Figure 2 presents a forest plot of the effect size estimates and
95% confidence intervals of the 16 participating sites and
meta-analyses for the association between mean hippocampal
volume and PTSD. Figure 3, Table 2, and Supplemental
Tables S7 to S10 present the results of male and female
stratified meta-analyses and separate analyses of the adult
(nonpediatric), military, and civilian samples. No significant
difference in effect size was observed in the analysis of a
gender by PTSD interaction term (p = .38) on hippocampal
volume or from the meta-regression of the proportion of
women in each sample as predicting the effect size estimates
(p = .14). However, as these tests can have low power, we
examined the associations observed in each subgroup. The
negative association between hippocampal volume and PTSD
was significant in the female-only, adult-only, and civilian an-
alyses. The association was nonsignificant in the male-only
and military analyses. Even though the female-only analysis
contained approximately 1100 fewer subjects than the full
sample, the hippocampal results were more significant in
women (Table 2; p = .00012), and Cohen’s d estimates indi-
cated a stronger effect than in the full sample (d = 20.31 vs.
d = 20.17). Similarly, effect size estimates indicated a higher
impact in the civilian (d = 20.21, p = .0032) versus military
(d = 20.11, p = .11) samples. This is perhaps unsurprising
given the confound between variables representing gender
and military status (see Supplemental Table S1). These differ-
ences may relate more strongly to gender than military status:
the effect size in military women (d = 20.23, p = .34, n = 88),
while nonsignificant, was stronger (more negative) than in the
Figure 1. Cohen’s d estimate of the association
between posttraumatic stress disorder and subcor-
tical brain volumes as well as confidence intervals on
effect size. Included is a primary analysis adjusted
for age, gender, and intracranial volume and follow-
up analyses with left and right volumes analyzed
separately. A plus sign (1) indicates that the com-
parison of posttraumatic stress disorder cases and
control subjects was significant at the p , .05 level.
An asterisk (*) indicates that the comparison was
significant after a Bonferroni correction for the eight
subcortical regions examined (p , .0063). Lat.,
lateral.
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Table 1. Meta-analysis of the Effect of Posttraumatic Stress Disorder on Subcortical Region Volumes Across 16 Datasets
Adjusting for Age, Gender, and Intracranial Volume

Region Cohen’s d (95% CI) SE p Value %diff I2 phet Cases
Control
Subjects

Men/
Women

Military/Civilian
Cohort

Pediatric/
Adult
Cohort

Nucleus Accumbens 20.081 (20.206 to 0.043) 0.064 .20 21.21 33.13 .080 778 1061 1105/734 836/1003 161/1678

Amygdala 20.11 (20.207 to 20.014) 0.049 .025a 21.11 0.00 .36 780 1061 1105/736 836/1005 161/1680

Caudate 0.0064 (20.102 to 0.115) 0.056 .91 0.13 16.38 .28 780 1063 1105/738 836/1007 161/1682

Hippocampus 20.17 (20.267 to 20.074) 0.049 .00054b 21.50 0.00 .74 780 1062 1104/738 835/1007 161/1681

Lateral Ventricle 0.084 (20.013 to 0.180) 0.049 .089 3.75 0.00 .48 781 1064 1105/740 836/1009 161/1684

Pallidum 0.047 (20.050 to 0.145) 0.050 .34 0.82 0.00 .10 766 1048 1105/709 836/978 161/1653

Putamen 0.016 (20.081 to 0.113) 0.050 .75 0.18 0.00 .76 764 1050 1105/709 836/978 161/1653

Thalamus 20.039 (20.136 to 0.058) 0.050 .43 20.33 0.00 .56 772 1053 1105/720 836/989 161/1664

CI, confidence interval.
aComparison was significant at the p , .05 level.
bComparison was significant after a Bonferroni correction for eight subcortical regions examined (p , .0063).
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overall meta-analysis estimate (d = 20.17), and the effect in
civilian men (d = 20.025, p = .87) is smaller than the overall
meta-analysis. However, it should be noted again that the
confidence intervals in effect size for men and women over-
lapped, and the formal test of heterogeneity by gender was
nonsignificant. The nominal association with the amygdala in
the full dataset was not significant in the subgroup meta-
analyses, potentially due to sample size. An analysis of
PTSD severity and hippocampal volume in women was
nominally significant (d = 20.22, p = .031), but the analysis of
PTSD severity and amygdala volume was not (d = 20.12,
p = .20).
Potential Confounding Variables

Finally, we examined the relationship between hippocampal
and amygdala volume and confounding variables including
AUD and childhood trauma. In a linear model adjusting for
age, gender, and ICV, we found AUD was not associated with
hippocampal volume whether or not PTSD was included as a
covariate (without PTSD: p = .12; with PTSD: p = .25).
Childhood trauma was negatively associated with hippo-
campal volume in a model adjusting for age, gender, and ICV
(d = 20.17, p = .0031) but was not significant if PTSD was
added as a covariate (d = 20.11, p = .064). AUD was asso-
ciated with smaller amygdala volume whether or not PTSD
Table 2. Female-Only Meta-analysis of the Effect of Posttraumat
for Age and Intracranial Volume

Region Cohen’s d (95% CI) SE p Value

Nucleus Accumbens 20.22 (20.39 to 20.061) 0.083 .0071a

Amygdala 20.14 (20.30 to 0.015) 0.081 .075

Caudate 0.008 (20.15 to 0.17) 0.081 .92

Hippocampus 20.31 (20.47 to 20.15) 0.081 .00012b

Lateral Ventricle 0.081 (20.077 to 0.24) 0.081 .32

Pallidum 0.10 (20.12 to 0.32) 0.11 .39

Putamen 20.051 (20.21 to 0.11) 0.083 .54

Thalamus 20.13 (20.32 to 0.073) 0.10 .22

CI, confidence interval.
aComparison was significant at the p , .05 level.
bComparison was significant after a Bonferroni correction for eight subc

Biological Psy
was included as a covariate (without PTSD as a covariate:
d = 20.012, p = .036; with PTSD: d = 20.012, p = .048).
Similarly, childhood trauma was associated with reduced
amygdala volume whether or not PTSD was included as a
covariate (without PTSD: d = 20.16, p = .0044; with PTSD:
d = 20.13, p = .019). We then examined the effects of PTSD
on hippocampal and amygdala volume, adjusting for these
potential confounding variables in datasets where this
covariate data was available. The association between hip-
pocampal volume and PTSD was attenuated but remained
significant when AUD or childhood trauma were added as
covariates (with AUD: d = 20.14, p = .014; with CT:
d = 20.14, p = .015). In the subset of subjects with AUD data
(n = 1443), the association between the amygdala and PTSD
was not significant whether or not AUD was included (with
AUD: p = .41; without AUD: p = .21). Similarly, the association
between PTSD and amygdala volume was not significant in
the subsample with childhood trauma data (n = 1423) whether
or not the adjustment for childhood trauma was included
(with: p = .33; without: p = .11). We additionally examined the
presence/absence of childhood trauma within PTSD cases as
a proxy for chronicity of trauma exposure (childhood vs.
adult). In both the hippocampus and the amygdala, there was
a trend toward smaller volumes for PTSD cases with the
presence of childhood trauma compared with PTSD cases
with no childhood trauma (for hippocampus: n = 513,
ic Stress Disorder on Subcortical Region Volumes Adjusting

%diff I2 phet Cases Control Subjects

22.32 1.50 .16 305 427

21.46 0.0047 .18 307 427

0.19 0.00 .67 307 429

22.42 0.00 .90 308 428

3.49 0.00 .87 308 430

1.13 35.30 .068 293 414

20.49 0.0064 .60 291 416

20.84 23.74 .12 299 419

ortical regions examined (p , .0063).
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Figure 2. Forest plot of the effect size estimates
and 95% confidence intervals of 16 participating
sites and meta-analyses for the association between
mean hippocampal volume and posttraumatic stress
disorder. For detailed descriptions and full names of
participating sites see Supplemental Tables S1–S3.
Adult meta-analysis includes all sites but University
of Washington. The military meta-analysis includes
Department of Defense (DoD) Alzheimer’s Disease
Neuroimaging Initiative (ADNI), Duke/Durham Veter-
ans Administration (VA), the VA Translational Center
for Traumatic Brain Injury and Stress Disorders
(TRACTS), University Medical Center (UMC) Utrecht,
and West Haven VA. The civilian meta-analysis in-
cludes the Academic Medical Center (AMC)
Amsterdam, Cape Town, Emory Grady Trauma
Project (GTP), McLean, University of New South
Wales (UNSW), University of Sydney (U of Sydney),
University of Michigan (U Michigan), VU University
Medical Center (VUMC) Amsterdam, Western
Ontario, and Yale studies.
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d = 20.17, p = .088; for amygdala: n = 513, d = 20.20,
p = .053). In an analysis of female PTSD cases, effect size
estimates for both the hippocampus and the amygdala were
larger (more negative), but the p value for the test of associ-
ation in the amygdala was no longer close to significant,
potentially due to the great reduction in sample size (for
hippocampus: n = 103, d = 20.51, p = .096; for amygdala:
n = 102, d = 20.46, p = .28).

Finally, to examine the effect of comorbidity between
depression and PTSD, we examined depression severity
within PTSD cases. Depression severity was not significantly
248 Biological Psychiatry February 1, 2018; 83:244–253 www.sobp.or
associated with either hippocampus or amygdala volume
either in the overall sample or in women (all p . .19).
DISCUSSION

In the largest study of neuroimaging and PTSD to date, our
multisite consortium found evidence of lower hippocampal
volume in subjects with current PTSD. Robust hippocampal
findings remained significant after controlling for multiple
comparisons, AUD, and childhood trauma, and within smaller
subcohorts. We additionally report smaller amygdala volume in
Figure 3. Cohen’s d estimate of the association
between posttraumatic stress disorder and subcor-
tical brain volumes as well as confidence intervals on
effect size for subsets of the data. Included are an-
alyses of men and women analyzed separately, as
well as all adult samples (nonpediatric), military, and
civilian datasets meta-analyzed separately. A plus
sign (1) indicates that the comparison of PTSD
cases and control subjects was significant at the
p , .05 level. An asterisk (*) indicates that the com-
parison was significant after a Bonferroni correction
for the eight subcortical regions examined
(p , .0063). Lat., lateral.
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PTSD, but this result did not survive the Bonferroni correction
for multiple comparisons andmust therefore be interpreted with
caution. Similar effects have been observed in retrospective
meta-analyses of published data, but these studies had smaller
sample sizes andmay be biased by the file drawer problem. Our
meta-analysis was prospective and performed with harmonized
analysis of original data. Therefore, it is unlikely that our effect
size estimates are inflated by excluding studies with nonsig-
nificant or contradictory findings. We also observed associa-
tions between PTSD and the left lateral ventricle in the full
meta-analysis, the volume of the nucleus accumbens in
women, and the pallidum in civilians, but these did not survive
multiple testing correction, thus requiring replication. The
strength of the associations observed with the hippocampus
(d =20.17, d =20.31 in women) and the amygdala (d =20.11)
are within the range of associations observed by other groups
using the ENIGMA protocols to studymajor depressive disorder
(32), bipolar disorder (33), obsessive-compulsive disorder (34),
and schizophrenia (35) (absolute value of d from 0.11 to 0.46
across subcortical structures and disorders).

Although we found an association between PTSD and hip-
pocampus volume, there are still many unanswered questions
about underlying causation. High levels of glucocorticoid
receptors in the hippocampus make it particularly prone to
effects of the elevated levels of glucocorticoids released in
response to stress (43–45). Some magnetic resonance imaging
studies in PTSD patients also concluded that reduced hippo-
campal volume is a result of stress exposure. This conclusion
is based on observations of reduced hippocampal volume in
trauma-exposed control subjects without PTSD relative to
trauma-unexposed control subjects (46,47). In contrast, other
magnetic resonance imaging studies did not detect group
differences between trauma-exposed and healthy control
subjects (48–50), suggesting that lower hippocampal volume is
specifically related to the presence of a psychiatric disorder
rather than exposure to trauma. These studies are consistent
with the hypothesis that lower hippocampal volume is a heri-
table risk factor for developing PTSD as demonstrated in twin
studies. In these studies, one twin was exposed to military
combat, and one was not. Of the combat-exposed individuals
who developed PTSD, the unexposed twin (without PTSD) also
had reduced hippocampal volume (51).

There is also evidence that amygdala volume may be nega-
tively associated with stress and stress-response mechanisms.
Exposure to high levels of chronic stress in rodents produces
corticosterone-mediated spinogenesis, dendritic arborization,
and hypertrophy of the amygdala (52). One study has found that
inbred recombinant mice strains with a relatively small baso-
lateral amygdala showed a stronger conditioned fear response
and corticosterone response to stress than mice strains with a
large basolateral amygdala (53). A recent study that showed
reduced amygdala volume following childhood trauma sug-
gested that severe adversity during childhood may at first
enhance amygdala sensitivity through dendritic growth and
synaptic connectivity, as shown in rodents (52), but repetitive
activation induces “wear and tear,” eventually resulting in a
smaller amygdala in adulthood (54). However, our amygdala
results did not survive multiple comparisons corrections, and
any speculations regarding themolecular mechanisms involved
in reduced amygdala volume must be interpreted with caution.
Biological Psy
Further, potential confounding remains a plausible alternative
explanation for the observed association (see below).

Gender Differences

PTSD is more prevalent in women than in men (55). Our results
show that the PTSD association with smaller hippocampal
volume was primarily due to a strong negative association in
women. However, we were unable to conclusively demon-
strate a larger effect size in women compared with men,
because the PTSD by gender interaction term was not signif-
icant. There are several potential reasons for the observed
strong effect in women apart from a true differential effect by
gender. Demographic differences between samples may have
inflated the strength of the association in samples that are
primarily female. Differences in the type of trauma experienced
by men and women may play a role in the observed differential
effect. Information on mean age, PTSD severity, depression
severity, AUD, and childhood trauma broken down by site and
gender are presented in Supplemental Tables S12 to S18.
Future studies should include both males and females when
possible to better assess gender differences in the negative
association between PTSD and hippocampal volume.

Childhood Trauma Exposure

In the current study, childhood trauma was negatively asso-
ciated with hippocampal volume, but not when PTSD was
included as a covariate. Controlling for childhood trauma
attenuated our hippocampal results, but hippocampal volume
was still significantly smaller in PTSD patients. These findings
suggest that reduced hippocampal is associated with PTSD
and not with childhood trauma itself.

Lower amygdala volume, on the other hand, was significantly
associated with more childhood trauma, both with and without
PTSD as a covariate. This is in line with prior studies showing a
negative correlation between childhood trauma and amygdala
volume (54,56,57). However, the relationship between PTSD
and amygdala volume was not even nominally significant in the
subsample with available childhood trauma information, so we
could not evaluate childhood trauma effects on the negative
association between amygdala volume and PTSD.

Role of AUD

AUD was not associated with hippocampal volume, and hip-
pocampal results remained significant after controlling for
alcohol. Our finding supports other studies that show that
hippocampal differences persist (13,48) or show bilateral
effects (50) after controlling for lifetime alcohol use or abuse,
suggesting that reduced hippocampal volume in PTSD is not
due to a confound with AUD.

In contrast, we observed a significant association between
AUD and smaller amygdala volume, irrespective of PTSD. This
finding is in line with prior studies showing smaller amygdala
volumes in alcohol-dependent perpetrators of intimate partner
violence (58), individuals with a family history of alcoholism
(59), and alcohol-dependent individuals, who also showed an
association with increased alcohol craving and intake (60). The
negative association between the amygdala and PTSD in the
subsample possessing alcohol information was not significant;
hence, we were not able to determine the degree to which our
chiatry February 1, 2018; 83:244–253 www.sobp.org/journal 249
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observed nominally significant association with the amygdala
was due to confounding between PTSD and AUD.
Limitations

Our study has some limitations. The uneven availability of
covariates across sites precluded an examination of important
factors such as PTSD duration, comorbidity (apart from
depression), trauma chronicity, and treatment. Inclusion of in-
formation on PTSD duration, chronicity, and treatment in
particular might have altered findings, and their absence limits
interpretation of the findings. The presence or absence of
childhood trauma was our only available proxy for chronicity
of trauma exposure, as detailed information of chronicity of
trauma exposure was unavailable from the majority of sites.
We did not control for psychotherapy or medication, and all
patients included in our analysis had current PTSD, and some
were recent-onset PTSD patients. Recent treatment studies
suggest that smaller hippocampal volume may be specifically
related to persistence of PTSD after treatment (50,61) and
smaller hippocampal volume was not observed in (recent-
onset) patients who recovered from PTSD (50,61–63). Follow-
up data on the chronicity of PTSD symptoms and treatment
could help strengthen the current findings.

While this is the largest multisite consortium study and the
largest meta-analysis of subcortical structures in PTSD to
date, the inclusion of additional cohorts with specific charac-
teristics and more detailed clinical information across cohorts
will be needed to evaluate the role of stratifying factors such as
age, gender, and type of trauma. For example, we only had one
nonadult (pediatric) cohort. Our adult-only analyses were suf-
ficient to demonstrate that the inclusion of this cohort did not
unduly bias results, but additional pediatric samples are
needed demonstrate if results are consistent across adult and
nonadult samples. We also lack sufficient data to assess the
overall impact of adult trauma load or to assess specific types
of adult and childhood trauma. We distinguished military and
civilian samples. However, individuals in the military samples
have also been exposed to nonmilitary trauma, and vice versa,
civilians were not excluded for deployment. Therefore, the
military-civilian distinction is not synonymous with different
types of trauma exposure. Much larger sample sizes will be
needed to robustly evaluate the role genetic variants play in the
observed associations.

An additional limitation is the absence of cross-site stan-
dardization of raters performing clinical assessment and
absence of standardization of scanners or acquisition
sequences, operating system, and hardware platform running
FreeSurfer. Similarly, there were differences in the instruments
used to assess PTSD, trauma, and AUD across sites, and
potentially even differences in how the instruments were
applied and interpreted. However, these weaknesses and
many others not present in the current research would be
faced by every literature-based meta-analysis of PTSD. A
major strength of our study is the standardization of segmen-
tation technique, and running a harmonized analysis protocol
across all sites. Methodological consistency was promoted by
using the same statistical models across all samples, making
this the most powerful study of subcortical volumes in PTSD
to date.
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Conclusions

The ENIGMA-PGC PTSD Working Group has demonstrated
that PTSD is associatedwith smaller hippocampus and possibly
amygdala volume. Both structures have ample a priori evidence
implicating their role in PTSD starting with the report of reduced
hippocampal volume in PTSD by Bremner et al. in 1995 (64). Our
study confirms this finding across a large number of demo-
graphically and clinically heterogeneous cohorts analyzed with
standardized segmentation technique, and running a harmo-
nized analysis protocol across all sites. Methodological con-
sistency was promoted by using the same statistical models
across all samples, making this the largest and most powerful
study of subcortical volumes in PTSD to date. Reduced hip-
pocampal volume was the most robust finding and survived a
conservative correction for childhood trauma and AUD.
Although we had nearly equal sample sizes across eight
subcortical structures, only the hippocampus was unequivo-
cally associated with PTSD. Therefore, the outsized role of the
hippocampus in the literature is not attributable solely to greater
attention paid to this structure. The hippocampus is crucial for
fear processing, episodic and contextual learning, and memory
processes related to PTSD symptomatology. This meta-
analysis firmly establishes the importance of the hippocampus
in PTSD, which by itself represents a substantial step forward in
the neurobiology of PTSD. Nevertheless, many questions
remain unanswered, and this study is part of an ongoing
extensive investigation into the neurobiological underpinnings
of PTSD. The ENIGMA-PGC PTSD Working Group has several
studies underway, including the association between PTSD and
white matter integrity, cortical thickness, regional cortical vol-
umes, hippocampal subfield volumes, and subcortical shape.
Forthcoming cross-disorder analyses are planned to study the
effects of childhood trauma on the brain. An investigation of the
impact of genetic variation on PTSD risk and response to stress
is also planned, which will leverage the work of the PGC-PTSD
workgroup—a large-scale genomics consortium to study PTSD
genomics (65). Taken together, these future investigations will
advance our understanding of PTSD neurobiology and poten-
tially yield new targets for treatment, improve personalized
medicine with existing treatments, and identify new targets to
ameliorate the negative effects of trauma exposure.
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