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Abstract 
Combat soldiers are vulnerable to Posttraumatic Stress Disorder (PTSD), following traumatic experiences 

in the battlefield. Studies have often used fear-related design to unravel the underlying neural deficits of 

learning and emotion regulation in PTSD patients. However, the role of individual uncertainty attitudes in 

the development of trauma-related psychopathology has hardly been examined, especially that uncertainty 

is highly related to the traumatic experiences from the battlefield. Through a monetary gambling paradigm 

inspired by behavioral economics, we explore the neural markers of PTSD symptoms of combat veterans 

in the realm of decision making, focusing on the subjective valuation of uncertain monetary gains and 

losses. We identify increased behavioral aversion to risky monetary gains and ambiguous monetary losses 

related to higher PTSD symptom severity. We find the key role of the emotional numbing cluster of PTSD 

symptoms in influencing the general activities of ventromedial prefrontal cortex (vmPFC) during valuation. 

We further suggest that a shift from value- to saliency- encoding pattern of subjective values across rewards 

and punishments in the valuation neural system, especially in ventral striatum, exist in combat veterans 

with PTSD, compared with trauma-exposed controls. Our results elucidate the increased neural sensitivity 

to highly salient rewards and punishments related to PTSD symptoms, and at the same time, point to the 

fundamental differences in brain regions involved in reward- and punishment- processing. We also identify 
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potential resiliency neural mechanisms that could protect trauma-exposed individuals against developing 

PTSD symptoms.  

 

Introduction 
Following a traumatic experience, some individuals develop Posttraumatic Stress Disorder (PTSD) 

symptoms, which include core symptoms of re-experiencing the traumatic event, avoidance of trauma 

reminders, emotional numbing, and exaggerated arousal and reactivity. These symptoms can be highly 

debilitating and prevent patients from engaging in social interactions and work activities. While 

medications and psychotherapy are helpful for some individuals, many remain symptomatic following 

treatment (Foa, Keane, and Friedman 2000). A better understanding of the neural basis of PTSD is crucial, 

as it can inform new approaches to individualized treatment. 

An important aspect of many traumatic experiences is the uncertainty surrounding actions and potential 

outcomes. Soldiers in combat, for example, are faced with highly uncertain life-threatening events that may 

result in serious injury of themselves or death of teammates. An individual’s attitude towards uncertainty 

and the ability to handle uncertainty may therefore affect one’s ability to cope with traumatic events. The 

notion of uncertainty has been incorporated in many fear-learning studies attempting to unravel the 

behavioral and neural mechanisms of PTSD (Brown et al. 2018; Homan et al. 2019). Participants in these 

studies encounter probabilistic deliveries of adverse outcomes (e.g. electric shocks), and their ability to 

predict these outcomes is measured (e.g. by their skin conductance responses). In a separate line of work, 

using a behavioral economic framework, our group has shown increased aversion to ambiguity (an 

uncertain situation where outcome probabilities are not known) in combat veterans with PTSD, choosing 

between potential monetary losses, compared to veterans with no PTSD (Ruderman et al. 2016). An 

intriguing possibility is that aversion to uncertainty, which is demonstrated in situations unrelated to the 

trauma, is also contributing to the exaggerated behavior in fear conditioning paradigms, and to the 

development and maintenance of PTSD symptoms.  
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As uncertainty attitudes affect the subjective value of options, it is plausible that neural computations of 

subjective value are altered in the brains of individuals who developed PTSD following trauma exposure. 

A large network of brain regions has been implicated in valuation and decision making, including the 

ventromedial prefrontal cortex (vmPFC), anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), 

dorsolateral prefrontal cortex (dlPFC), ventral striatum, amygdala, and thalamus (Kable and Glimcher 

2009; Gleichgerrcht et al. 2010). While the neural encoding of the subjective value of rewards has been 

extensively studied in the general population, it is still unclear how subjective values of punishments are 

represented in the brain. On the one hand, there is evidence for a unified valuation system, which encodes 

the values of both rewards and punishments  (Tom et al. 2007; Fujiwara et al. 2009; Kahnt et al. 2014; 

Bartra, McGuire, and Kable 2013); on the other hand, there is evidence for different brain circuits 

processing outcomes from the two valence domains (O’Doherty et al. 2001; Yacubian et al. 2006; Kim et 

al. 2014; Monosov and Hikosaka 2012; Fiorillo 2013). Moreover, while we know that the subjective values 

of ambiguous gains are encoded in the valuation system (Levy et al. 2010; Zadelaar et al. 2019), we are not 

aware of any examination of the neural encoding of subjective value of ambiguous losses. Here we 

combined our simple economic task with functional MRI to examine the neural encoding of subjective 

value of ambiguous losses, and the alterations in this encoding in individuals exposed to trauma.  

In this study, we use a gambling task in conjunction with fMRI and computational modeling to investigate 

the neural mechanisms underlying higher uncertainty aversion in combat veterans who developed PTSD 

following trauma exposure. We included combat veterans who did not develop PTSD symptoms as controls 

(trauma-exposed controls), thus were able not only to investigate psychopathology of PTSD but also 

resiliency factors against it. We find that veterans with PTSD encoded the subjective values of uncertain 

monetary outcomes in a U-shape manner (i.e. saliency-encoding), compared with trauma-exposed controls 

who encoded the subjective values monotonically (i.e. value-encoding). Our results suggest that this shift 

from value-encoding to saliency-encoding, especially of ambiguous monetary losses, could be a neural 

marker for PTSD symptom severity.   
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Results 
In an fMRI experiment, combat veterans with current PTSD diagnosis and those who never developed 

PTSD completed a gambling task under four decision conditions on two separate days. Participants chose 

between a sure monetary outcome (either gaining or losing money) and an uncertain outcome (either risky 

or ambiguous, under gains or losses, Fig 1). We estimated the uncertainty attitudes of each participant 

through a behavioral model, and aimed to understand the influence of PTSD symptom severity on both 

the behavioral attitudes and the neural mechanisms of valuation. 

 

Figure 1. Study design 
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A: Timeline of the study. Participants went through a screening session and two scanning sessions on three 

different days. The screening session determined the eligibility of participants based on PTSD diagnosis, 

combat exposure, and exclusion of other neurological disorders. Eligible participants went through two 

days’ fMRI scans of a decision making task. Labels of measures: SCID: Structured Clinical Interview for 

DSM-4, CAPS: Clinician Administered PTSD Scale, PCL5: , PTSD Checklist for DSM-5 , BDI: Beck 

Depression Inventory, STAI-1: State Anxiety, STAI-2: Trait Anxiety, DES: Dissociative Experiences 

Scale, CES: Combat Exposure Scale, CTQ: Childhood Trauma Questionnaire, KBIT: Kaufman Brief 

Intelligence Test, BIS/BAS: Behavioral Avoidance/Inhibition Scale, BIS-11: Barratt Impulsiveness Scale, 

DOSPERT: Doman-Specific Risk-Taking Scale. B: Task design: participants chose between a lottery and 

a sure outcome under four conditions: risky gains, ambiguous gains, risky losses, and ambiguous losses. 

Lotteries are shown as examples. C: Levels of risk (0.25, 0.5, and 0.75), ambiguity (0.74, 0.5, and 0.24), 

and monetary outcomes (20 monetary outcomes in either gains or losses) of the lottery. D: On each trial, 

participants had 6 seconds to view the options, and made a choice after a green response cue. They had a 

time limit of 3.5 seconds to register the choice, after which they would immediately see a confirmation with 

the yellow square representing the side they chose. The lottery was not played out during the scan to avoid 

learning. The inter-trial-interval (ITI) was jittered among 4, 6, and 8 seconds, and the remaining time during 

the response window (3.5 seconds – response time) would be added to the ITI. 

 

Clinical symptom variation 
Participants displayed a large range and variation of PTSD symptom severity (Fig 2A), assessed by the 

Clinician-Administered PTSD Scale (CAPS) (Blake et al. 1995). Veterans with PTSD showed higher 

total CAPS score compared to controls (PTSD, N = 23: Mean = 72.13, SD = 15.04; control, N = 34: Mean 

= 6.21, SD = 9.68; t(34) = 18.58, p < 0.001). PTSD symptoms as captured by the 5-factor model of CAPS 

(Harpaz-Rotem et al. 2014) were highly correlated with symptoms of depression, anxiety and dissociative 

experiences (Fig 2B, see Table 1 for descriptive statistics of all measures), suggesting comorbidity of 
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these clinical symptoms in our participants. In order to fully account for the clinical symptoms’ influence 

on participants’ behavior and neural activity during the task, we conducted PCA on these clinical 

symptoms. Since the severity of psychopathology may be affected by experienced trauma, we also 

included measures of combat exposure (CES) and childhood trauma (CTQ) in the PCA. The first three 

components accounted for ~80% of the variance in those data (Fig 3A).  Figure 3B presents the loading 

coefficients of these three components: the first component is affected by all clinical symptoms (PTSD, 

depression, anxiety, and dissociative experiences) and might reflect a general affective factor. This 

component is highly consistent with PTSD symptom severity (correlation with CAPS Spearman’s ρ = 

0.94, n = 55, p < 0.001), and PTSD diagnosis could be clearly classified using the first component (Fig 

3C). The second component is mostly affected by re-experiencing, avoidance and anxious arousal 

symptoms of CAPS, and combat exposure severity, potentially representing a fear learning-updating 

deficit. The third component is mostly affected by trauma severity, reflecting combat exposure and 

childhood trauma. These components were not strongly correlated with PTSD symptom severity (n = 55, 

Component 2: correlation with CAPS Spearman’s ρ = 0.11, p = 0.43; Component 3: correlation with 

CAPS Spearman’s ρ = 0.029, p = 0.84).  
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Figure 2. Symptom severities of participants. 

 

A: Distribution of CAPS total score, colored by combat veterans with or without PTSD diagnosis. B: PTSD, 

depression and anxiety symptom severities were highly correlated. Numbers in the upper right panels 

indicate pair-wise Pearson correlation coefficients. Significance levels: ***, p < 0.001; **, p < 0.01; *, p < 

0.05. Lower left panels show pair-wise scatter plots and smoothed curves using locally weighted 

polynomial regression. Panels in the diagonal show distributions and density curves for each measure. 

Labels of measures: CAPS-ReExp: re-experiencing, CAPS-Avoid: avoidance, CAPS-Numb: numbing, 

CAPS-DysA: dysphoric arousal, CAPS-AnxA: anxious arousal, BDI: Beck Depression Inventory, STAI-

1: State Anxiety, STAI-2: Trait Anxiety, DES: Dissociative Experiences Scale, CES: Combat Exposure 

Scale, CTQ: Childhood Trauma Questionnaire. 
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Table 1. Descriptive statistics of demographics and clinical measures of participants reported in the 
behavioral results. 

 PTSD Control 
Number of participants 24 34 
Age 34.70 (6.44) 39.17 (10.03) 
Kaufman Brief Intelligence Test 
(KBIT) 

105.63 (10.52) 111.59 (13.22) 

Clinician Administered PTSD 
Scale (CAPS)-Total Score 

72.13 (15.04) 6.21 (9.68) 

CAPS-Re-experiencing 19.83 (6.79), n = 23 1.00 (1.86) 
CAPS-Avoidance 10.65(3.41), n = 23 0.47 (1.38) 
CAPS-Emotional Numbing 18.13 (6.61), n = 23 1.03 (3.03) 
CAPS-Dysphoric Arousal 15.09 (3.15), n = 23 2.00 (3.65) 
CAPS-Anxious Arousal 8.44 (2.56), n = 23 1.71 (2.87) 
PTSD Checklist for DSM-5 
(PCL-5) 

41.54 (15.79) 10.88 (15.95) 

Beck Depression Inventory 
(BDI) 

26.11 (13.80) 5.50 (7.88) 

State Anxiety (STAI-1) 47.92 (12.72) 32.62 (9.43) 
Trait Anxiety (STAI-2) 47.32 (16.23) 31.33 (10.94) 
Dissociative Experience Scale 
(DES) 

44.04 (34.53) 17.31 (20.75), n = 33 

Combat Exposure Scale (CES) 19.96 (9.06), n = 23 13.00 (8.57) 
Childhood Trauma 
Questionnaire (CTQ) 

39.04 (14.03), n = 23 34.43 (8.76) 

Mean (standard deviation) 
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Figure 3. Principal component analysis (PCA) of clinical symptoms and trauma exposure measures. 

 

A: Cumulative variance explained by all principal components. B: Loading coefficients of the first three 

principal components, representing general affective symptom, deficit in fear learning-updating, and trauma 

severity, respectively. Labels: CAPS-ReExp: re-experiencing, CAPS-Avoid: avoidance, CAPS-Numb: 

emotional numbing, CAPS-DysA: dysphoric arousal, CAPS-AnxA: anxious arousal, BDI: Beck 

Depression Inventory, STAI-1: State Anxiety, STAI-2: Trait Anxiety, DES: Dissociative Experiences 

Scale, CES: Combat Exposure Scale, CTQ: Childhood Trauma Questionnaire. C: Participants plotted in the 

two-dimensional spaces represented by pairs of the first three principal components, colored by PTSD 

diagnosis. 

 

PTSD symptoms predict increased aversion to ambiguity in the loss domain, and 
increased risk aversion in the gain domain 
For each participant, we estimated risk and ambiguity attitudes for gains and losses, using the combined 

data from both scanning sessions (see equations 1 and 2 in Model-based Risk and ambiguity attitudes 
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estimation in the Methods section; see Supplementary Fig 1A for an example from one participant). We 

then investigated the associations between these attitudes and PTSD diagnosis status, as well as PTSD 

symptom severity. All attitudes were transformed such that negative numbers indicate aversion (to risk or 

ambiguity), and positive numbers indicate seeking. Based on the previous behavioral finding that PTSD 

symptom severity is associated with higher aversion to ambiguity in losses (Ruderman et al. 2016), we 

first investigated ambiguity attitudes. At the group level, participants were not significantly averse to 

ambiguity in the domain of losses (Fig 4A; PTSD: Mean = -0.25, t(23) = -1.81, p = 0.11; Control: Mean = 

0.003, t(33) = 0.040, p = 0.97), and were significantly averse to ambiguity in the domain of gains (Fig 4A; 

PTSD: Mean = -0.35, t(23) = -3.45, p < 0.01; Control: Mean = -0.42, t(33) = -7.27, p < 0.001 ). However, 

a two-way ANOVA of ambiguity attitude with domain as the within-subject factor, and group as the 

between-subject factor showed a significant interaction between domain and group (F(1,56) = 4.34, p < 

0.05, η2 =  0.0279). Post-hoc comparisons showed that veterans with PTSD were marginally more averse 

to ambiguity under losses (p = 0.081), but not under gains (p = 0.53). A dimensional analysis (Fig 4B) of 

this symptom–behavior relationship, regardless of PTSD diagnosis, revealed a negative correlation 

between ambiguity attitudes in the loss domain and CAPS total score (Spearman’s ρ with CAPS total 

score = -0.30, p < 0.05), indicating that higher symptom severity was related to higher aversion to 

ambiguity under losses. Since many control participants had a CAPS score of zero, we also repeated the 

analysis using PCL-5 scores instead of CAPS and overserved a similar effect (Supplementary Fig 1B, 

Pearson’s r with PCL-5 = -0.31, p < 0.05).   

Next, we examined risk attitudes. Both the PTSD and control groups exhibited risk aversion in the 

domain of gains (PTSD: Mean = -0.54, t(23) = -13.34, p < 0.001; Control: Mean = -0.28, t(33) = -1.80, p 

< 0.001). In the domain of losses, veterans with PTSD exhibited risk seeking (Fig 4C; PTSD: Mean = 

0.34, t(23) = 5.43, p < 0.001), while combat controls exhibited marginal risk seeking (Control: Mean = 

0.20, t(33) = 1.82, p = 0.078, FDR corrected for four comparisons). A two-way ANOVA of risk attitude 

with domain (gain or loss) as the within-subject factor, and group as the between-subject factor revealed a 
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significant interaction between domain and group (F(1,56) = 6.29, p < 0.05, η2 =  0.0521). Post-hoc 

comparisons showed that veterans with PTSD were more averse to risk under gains (p < 0.01), but not 

under losses (p = 0.34), compared with combat controls. Examining this relationship further with a 

dimensional approach (Fig 4 D and Supplementary Fig 1C), we observed a similar effect:  PTSD 

symptom severity was negatively correlated with risk attitudes in the gain domain (Spearman’s ρ with 

CAPS total = -0.39, p < 0.01; Pearson’s r with PCL5 = -0.36, p < 0.01).  

 

Figure 4. Uncertainty attitudes and PTSD symptom severity.  
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A: Group comparison between veterans with PTSD and combat controls of ambiguity attitudes in gains and 

losses. B: PTSD symptom severity was negatively correlated with ambiguity attitude in losses. C: Group 

comparison between veterans with PTSD and combat controls of risk attitudes in gains and losses. D: PTSD 

symptom severity was negatively correlated with risk attitude in gains. In A and C, comparing each group’s 

attitudes with zero were FDR-corrected across all four comparisons in each uncertainty type. Post-hoc 

comparisons between groups in A and C are FDR-corrected. Significance level:  *, p<0.05; **, p<0.01; 

***, p<0.001.  

 

Because our participants showed high levels of comorbidity with other clinical symptoms, especially 

depression and anxiety (Fig 2B), we also examined the correlation between uncertainty attitudes and the 

first three principal components of all clinical measures. Principal component 1 (general affective 

symptom) was negatively correlated with risk attitude under gains (Pearson’s r = -0.35, p < 0.01) and 

ambiguity attitude under losses (Pearson’s r = -0.29, p < 0.05), consistent with the effect of the overall 

PTSD severity indicated by CAPS total. We did not find any relationship between uncertainty attitudes 

and the second (fear sensitivity) or the third (trauma severity) principal components. To control for 

differences in age, income, education and intelligence, we also looked at the relationship between PTSD 

symptoms and uncertainty attitudes accounting for these factors. We included PTSD severity (CAPS) 

together with age, income, education, and intelligence in a linear regression model to explain uncertainty 

attitudes. For risk attitude in the gain domain, only the effect of CAPS score was significant (see 

Methods: Model-based Risk and ambiguity attitudes estimation; multi-factor ANOVA by Generalized 

Linear Model: F(1, 42) = 8.97, p < 0.01), but not the four demographic factors. Similarly for ambiguity 

attitude in losses, CAPS (multi-factor ANOVA, F(1, 42) = 5.54, p < 0.05) was the only significant factor.  

Because seven of the combat-control veterans in this study sample also participated in the previous 

behavioral study, we also repeated the analysis excluding these returning participants, to yield a 

completely independent dataset. The negative relationships between PTSD symptom severity and 
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ambiguity attitude in losses (Spearman’s ρ with CAPS total= -0.31, p < 0.05, n = 50), and between PTSD 

symptom severity and risk attitude in gains (Spearman’s ρ = -0.42 with CAPS total, p < 0.01, n = 50) still 

hold in this independent sample (Supplementary Fig 2B, D).  

We also assessed participants’ risk-taking attitudes through the Domain-Specific Risk-Taking 

(DOSPERT) Scale self-report questionnaire, but none of the domains (Ethical, Financial, Health/Safety, 

Recreational, and Social) was correlated with PTSD symptoms severity measured by CAPS total. Among 

the other self-report measures, CAPS total was correlated with total score of Behavioral Inhibition Scale 

(BIS, Spearman’s ρ = 0.37, p < 0.01, n = 57), and with total score of Barratt Impulsiveness Scale (BIS11, 

Spearman’s ρ = 0.47, p < 0.001, n = 57). 

 

PTSD symptom severity is related to diminished neural response to decision making 
under uncertainty, and emotional numbing plays the key role 
To investigate the neural mechanism of the stronger aversion to uncertainty observed in veterans with 

PTSD, we first examined the general neural activity during decision making (see descriptive statistics of 

participants reported in the neural results in Table 2). Because the key process of our task is evaluating 

the subjective values of the uncertain and sure options, we looked at the neural activity during the 6-

second period of options presentation on each trial. In a whole-brain analysis, we explored the 

relationship between PTSD symptom severity and the general neural activity during this valuation 

process. We found that activity in a vmPFC area was negatively correlated with CAPS total score (p < 

0.001, cluster-based corrected, Fig 5A), during the second session of the task .This negative relationship 

was not specific to a particular condition – rather, it was consistent across all four decision contexts 

(Figure 5B; Pearson’s r(risky gains) = -0.50, r(ambiguous gains) = -0.51, r(risky losses) = -0.51, 

r(ambiguous losses) = -0.40). Interestingly, a linear regression of this region’s activity on all five factors 

of the CAPS showed that only emotional numbing significantly contributed to this negative correlation 

(standardized regression coefficient, Beta = -0.72, t = -2.32, p < 0.05, Fig 5C). Age and intelligence 
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(KBIT) did not significantly influence neural activity (standardized regression coefficient, Age: Beta = -

0.14, t = -1.13, p = 0.26; intelligence: Beta = 0.044, t = 0.33, p = 0.75; Fig 5C). Variable selection using 

exhaustive search also indicated that including only the Emotional Numbing cluster out of all PTSD 

symptom clusters best explained the relationship between vmPFC neural activity and PTSD symptom 

severities (Fig 5D, BIC = 112.8; see details in fMRI GLM second-level analysis in the Methods section). 

 

Table 2. Descriptive statistics of demographics and clinical measures of participants reported in the 
neural results. 

 PTSD Control 
Number of participants 19 28 
Age 35.59 (6.86) 38.62 (10.42) 
Kaufman Brief Intelligence Test 
(KBIT) 

104.16 (11.24) 112.97 (13.42) 

Clinician Administered PTSD 
Scale (CAPS)-Total Score 

71.42 (15.52) 5.55 (9.40) 

CAPS-Re-experiencing 19.84 (7.41) 1.00 (1.95) 
CAPS-Avoidance 10.21 (3.52) 0.38 (1.21) 
CAPS-Emotional Numbing 17.95 (6.91) 0.72 (2.14) 
CAPS-Dysphoric Arousal 14.89 (2.81) 1.79 (3.40) 
CAPS-Anxious Arousal 8.53 (2.41) 1.66 (2.93) 
PTSD Checklist for DSM-5 
(PCL-5) 

42.37 (15.46) 9.93 (15.99) 

Beck Depression Inventory 
(BDI) 

24.95 (13.40) 5.07 (8.08) 

State Anxiety (STAI-1) 46.96 (11.41) 31.69 (8.69) 
Trait Anxiety (STAI-2) 45.62 (16.07) 30.12 (10.32) 
Dissociative Experience Scale 
(DES) 

47.53 (36.50) 16.17 (20.61) 

Combat Exposure Scale (CES) 21.06 (9.70), n = 18 13.14 (8.19) 
Childhood Trauma 
Questionnaire (CTQ) 

39.05 (15.53), n = 18 34.64 (9.25) 

Mean (standard deviation) 

For imaging analysis, 10 participants were excluded from those reported in the behavioral results because 

of fMRI data quality. 
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Figure 5. Reduced vmPFC activity during valuation is related to PTSD symptom severity 

 

A: A whole-brain analysis revealed that activity in vmPFC during valuation regardless of decision condition 

was negative correlated with CAPS total score. B: Visualization of this negative correlation between general 

activity during valuation and CAPS total score is presented separately in four decision conditions in this 

vmPFC ROI. C: Emotional numbing symptom severity drove this negative relationship, revealed by a linear 

regression model on the vmPFC activity including all clusters of the 5-factor model of CAPS. D: Variable 

selection using exhaustive search also indicated that emotional numbing was the key symptom driving this 
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relationship. Each row of the graph shows the selected variables (shaded) for the best model with a given 

number of predictors. Rows are ranked and colored by BIC. The top row represents the best model, which 

includes only Emotional numbing as the predictor, among all possible combinations of predictors. Variable 

naming: ReExp: re-experiencing, Avoid: avoidance, Numb: emotional numbing, DysA: dysphoric arousal, 

AnxA: anxious arousal. 

 

Neural encoding of subjective value of risky and ambiguous gains and losses  
The association between vmPFC activity and PTSD symptom severity in our economic decision-making 

task is consistent with our hypothesis regarding the involvement of the valuation system in PTSD. We 

next turn to directly examine the neural correlates of valuation in the task. For each participant, we 

calculated the subjective value of the lottery presented on each trial based on the behavioral model (see 

equation 1 in Methods), using the participant-specific risk and ambiguity attitudes under gains and losses. 

We then included the subjective values (positive for gain lotteries, negative for loss lotteries) in the GLM, 

separately for each of the four decision conditions. Replicating previous results (Levy et al. 2010), a 

whole-brain analysis revealed a strong representation of subjective value of gains in medial brain regions, 

including vmPFC, ACC, PCC, and bilateral caudates (Fig 6A). Under losses, however, the picture was 

very different. Neural representations of subjective value were mostly found in lateral regions of the 

brain, including posterior parietal cortex (PPC), middle frontal cortex and cerebellum (Fig 6B; for 

complete list of regions for all four decision conditions, see Supplementary Table 1). These results 

suggest differences in basic mechanisms of neural encoding of the subjective value of rewards and 

punishments, and provide basis for further investigating the effect of PTSD symptoms on the neural 

encoding of value. 
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Figure 6. Neural representation of subjective value of gains and losses among all participants 

 

Whole-brain analyses revealed neural subjective-value signals of all veteran participants (n = 48, PTSD and 

control veterans combined), under domains of: A. gains, and B. losses. All maps were corrected using 

cluster-based method controlling family-wise error at 0.05, and thresholded at p < 0.001 at the voxel level. 
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PTSD symptom severity is associated with altered neural encoding of subjective value of 
uncertain options 
Since choices in the ambiguous-loss condition were related to PTSD symptoms both in a previous 

behavioral study (Ruderman et al. 2016) and in the current imaging study, we focused our analysis on this 

decision condition. First, we examined the encoding of subjective value in whole-brain analyses, 

separately in the PTSD and combat control groups. In controls (Fig 7A, right), activation patterns were 

similar to those observed in the combined group (Fig 6B), exhibiting positive correlation with subjective 

value (decreased activity for increased losses) in bilateral frontal, parietal, and cerebellar regions. 

Conversely, in veterans with PTSD, subjective value of ambiguous losses was represented in a negative 

manner (increased activity for increased losses) in bilateral temporal regions (Fig 7A left). Our behavioral 

data demonstrated an additional association between PTSD symptom severity and risk attitude in the gain 

domain. We therefore also examined the effect of PTSD on subjective-value encoding in this condition. 

Subjective value of risky gains was encoded positively in the brains of veterans with PTSD (increased 

activity for increased gains) in medial prefrontal cortex (mPFC), ACC, PCC, caudate and temporal 

regions, but was not strongly encoded in the brains of controls (Fig 7B). For completion, we also 

investigated the other two conditions: subjective values of ambiguous gains were represented in medial 

brain regions in both groups (supplementary Fig 3A); there was very little representation of subjective 

value of risky losses in either group (Supplementary Fig 3B; for a complete list of subjective-value-

encoding regions from the whole-brain analysis, see Supplementary Table 2). Overall, these results 

demonstrate potential differences in the direction of loss-encoding, and in the magnitude of gain-

encoding, between the two groups. 
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Figure 7. Neural representation of subjective value separately in PTSD and control 

 

Neural representation of subjective value in veterans with PTSD (left) and combat controls (right), under 

A: ambiguous losses, and B: risky gains. All maps were corrected using cluster-based method controlling 

family-wise error at 0.05, and thresholded at p < 0.001 at the voxel level. 

 

To confirm these group differences, we directly contrasted the neural representation of subjective value 

between veterans with PTSD and combat controls in a whole-brain analysis. Veterans with PTSD showed 

more negative subjective-value signals for ambiguous losses in left inferior frontal regions and bilateral 

occipital regions (Fig 8A.; for statistics of all regions, see Supplementary Table 3). We then used a leave-

one-subject-out (LOSO) procedure to define regions around the inferior frontal gyrus (IFG) region and 

sampled activation in an unbiased manner (see Methods: Leave-one-subject-out (LOSO) procedure). The 

subjective-value signal of ambiguous losses in IFG was negatively correlated with PTSD symptom 

severity (Fig 8B; Spearman’s ρ = -0.35, p < 0.05, n = 48), such that higher symptom severity was 

associated with more negative subjective-value signal. Veterans with PTSD showed more positive 

subjective-value signals for risky gains in right orbitofrontal cortex (OFC) in a whole-brain analysis (Fig 

8C), and PTSD symptoms severity was positively correlated with subjective-value signal of risky gains in 

this OFC region (Fig 8D; Spearman’s ρ = 0.52, p < 0.001, n = 48). For completion, we also looked at the 
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other two conditions. Veterans with PTSD showed more positive encoding of subjective value of 

ambiguous gains in the thalamus (Supplementary Fig 3C), and there was no group difference in the 

subjective-value encoding of risky losses. 

 

Figure 8. Neural representation of subjective value directly contrasting PTSD and control  

 

Whole-brain comparisons of neural subjective-value signals between veterans with PTSD and combat 

controls, under A: ambiguous losses, and C: risky gains. All maps were corrected using cluster-based 

method controlling family-wise error at 0.05, and thresholded at p < 0.001 at the voxel level. B: Neural 

subjective-value representation of ambiguous losses in the left IFG was negatively correlated with PTSD 

symptom severity. D: Neural subjective-value representation of risky gains in the right OFC was positively 

correlated with PTSD symptom severity. ROIs in B and D were defined by a leave-one-subject-out 

approach. 
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To further probe group and individual differences in value encoding, we examined the subjective-value 

signals of each group in the classical value areas – the vmPFC and the ventral striatum – as defined in a 

meta-analysis by Bartra and colleagues (Bartra, McGuire, and Kable 2013). We again focused on the 

conditions of ambiguous losses and risky gains. In vmPFC, subjective-value signal of risky gain lotteries 

was positively correlated with PTSD symptom severity (Fig 9A, Spearman’s ρ with CAPS = 0.31, p < 

0.05). In ventral striatum, subjective-value signal of ambiguous loss lotteries was negatively correlated 

with PTSD symptom severity (Fig 9B, Spearman’s ρ with CAPS = -0.35, p < 0.05). PTSD symptom 

severity was not significantly associated with the subjective-value signal of ambiguous losses in vmPFC 

(Fig 9A, Spearman’s ρ with CAPS = -0.18, p = 0.22), or with the subjective-value signal of risky gains in 

ventral striatum (Fig 9B, Spearman’s ρ with CAPS = 0.22, p = 0.14; see Supplementary Fig 4 A and B for 

correlations with PCL5).  These relationships could also be revealed in the group comparison (Fig 9 C 

and D). The subjective-value signal of ambiguous losses was more negatively encoded in ventral striatum 

in veterans with PTSD compared with combat controls (Fig 9D, t = -2.77, p < 0.01). Conversely, the 

subjective-value signal of risky gains was marginally more positively encoded in vmPFC in veterans with 

PTSD than in combat controls (Fig 9C, t = 1.97, p = 0.054). 

The relationships between subjective-value signals and PTSD symptom severity hold after controlling for 

age, income, education and intelligence. The subjective-value signal of ambiguous losses in ventral 

striatum was affected by CAPS (see Methods: fMRI GLM second-level analysis; multi-factor ANOVA 

by Generalized Linear Model, F(1, 33) = 6.01, p < 0.05), and not by the four demographic factors. The 

subjective-value signal of risky gain lotteries in vmPFC was marginally affected by CAPS (multi-factor 

ANOVA by Generalized Linear Model: F(1, 33) = 3.53, p = 0.069), and not by the four demographic 

factors. 

Besides PTSD symptoms, we also examined potential relationships between subjective-value signals and 

other symptoms, as captured by the three principal components. In vmPFC, component 1 (general 

affective symptom) was positively correlated with encoding of subjective value of risky gains (Pearson’s 
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r = 0.30, n = 47, p < 0.05), consistent with the effect of PTSD symptom severity. Component 3 (trauma 

severity) was negatively correlated with encoding of subjective value of ambiguous losses (Pearson’s r = 

-0.29, n = 47, p < 0.05), in the same direction as the correlation between subjective value of ambiguous 

losses and PTSD symptom severity. In ventral striatum, no correlation survived our statistical thresholds 

(see all correlations in Supplementary Fig 4C). 

  

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted April 16, 2020. . https://doi.org/10.1101/2020.04.14.041467doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.14.041467
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

Figure 9. Neural subjective-value signals in external ROIs of vmPFC and ventral striatum were 
related to PTSD symptom severity 

 

A: In vmPFC, correlation between subjective-value signals of ambiguous losses and risky gains and PTSD 

symptom severity (CAPS total). B: In ventral striatum, correlation between subjective-value signals of 

ambiguous losses and risky gains and PTSD symptom severity (CAPS total). C: In vmPFC, group 

comparison between veterans with PTSD and combat controls of neural subjective-value signals of four 
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types of lotteries. D: In ventral striatum, group comparison between veterans with PTSD and combat 

controls of neural subjective-value signals of four types of lotteries. E: In ventral striatum, value-encoding 

of subjective values existed in combat controls but not in veterans with PTSD; saliency-encoding of 

subjective values existed in veterans with PTSD but not in combat controls. In panels C and D, comparisons 

are post-hoc FDR-corrected after ANOVA within each figure. In panel E, comparisons with zero for each 

PTSD and Control group were FDR-corrected across four comparisons in two figures. Significance level:  

*, p<0.05; **, p<0.01; ***, p<0.001. 

 

A shift from value-encoding to saliency-encoding of ambiguous losses in PTSD 
Our results so far point to differences in the mechanisms of subjective-value encoding between veterans 

with PTSD and combat controls. This difference is most notable for ambiguous losses: in combat 

controls, ambiguous losses were encoded in a positive manner (decreased activity for increased losses) 

consistent with a monotonic representation of value. Conversely, in the brains of veterans with PTSD, 

losses were encoded negatively (increased activity for increased losses), consistent with a U-shaped 

saliency-encoding mechanism (Fig 10). This difference in representation was particularly striking in the 

ventral striatum (Fig 9D). To directly confirm this group difference, however, we need to examine gains 

and losses on the same scale. To this end, we constructed two GLMs, one with a single predictor for the 

value of ambiguous gains and losses, and the other with a single predictor for the saliency of the same 

gains and losses. Subjective values of the lotteries were used for the value predictor, and saliency was 

computed as the absolute value of these subjective values (Fig 9E; see Methods: fMRI GLM first-level 

analysis). While the ventral striatum in controls significantly encoded value (one-sample t test GLM beta 

compared with 0, t(28) = 3.4, p < 0.01), but not saliency (t(28) = -0.62, p = 0.54), the opposite pattern was 

observed in veterans with PTSD: activity in the same brain area in the PTSD group encoded saliency 

(t(18) = 2.7, p < 0.05), but not value ((t(18) = 0.99, p = 0.45; all p values were FDR corrected for four 
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comparisons).  Furthermore, the saliency-encoding patterns were significantly different between veterans 

with PTSD and combat controls (two-sample t test: t(39.3) = -2.5, p < 0.05).  

 

Figure 10. A shift from value- to saliency- encoding of subjective value in veterans with PTSD, 
compared with controls 

 

Summary of the relationship between PTSD symptom severity and subjective-value encoding, focusing on 

the differences between shapes of encoding across gains and losses.  

 

PTSD symptom severity variation was explained better by neural activities than 
behavioral uncertainty attitudes 
Finally, we explored whether PTSD symptom variation could be better explained by neural activities or 

behavioral uncertainty attitudes, or combining them both. We constructed three linear models to predict 

PTSD symptom severity indicated by CAPS total score, using (1) only general neural activities under four 

decision conditions in vmPFC area defined in Fig 5, (2) only behavioral uncertainty attitudes under four 

decision conditions, (3) both general neural activities and behavioral uncertainty attitudes under four 

decision conditions, all controlling for age and intelligence (KBIT) (see details in Using behavioral and 

neural variation to predict PTSD symptom variation of the Methods section). The model including only 
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neural measures best explained the variation of PTSD symptom severity, indicated by BIC (BIC(neural 

model) = 132.8, BIC(behavioral model) = 154.7, BIC(full model) = 143.8, Supplementary Fig 5A).   

 

Discussion 
In this study, we explored the neural basis of valuing uncertain monetary rewards and punishments, in 

veterans exposed to combat trauma with a wide range of PTSD symptoms. Behaviorally, symptom 

severity was associated with increased aversion to ambiguous losses, and increased aversion to risky 

gains. These two conditions were also the ones in which PTSD symptom severity influenced the neural 

representations of subjective value. Two main effects were observed: first, while ambiguous losses were 

encoded in a positive manner in the brains of controls, individuals with PTSD showed, on average, 

negative encoding of ambiguous losses in several brain areas (Fig 8A, Fig 7A, Fig 9D), consistent with a 

saliency representation. Second, increased PTSD symptoms were associated with stronger representation 

of subjective value of risky gains in value-related areas, including the vmPFC, PCC and OFC. In fact, the 

average activation pattern for subjective value of risky gains in the PTSD group (Fig. 7B left) was very 

similar to activation patterns observed in the general population (Levy et al. 2010; Bartra, McGuire, and 

Kable 2013), whereas controls did not show strong value-encoding signals (Fig 7B right). An intriguing 

possibility is that the altered processing of ambiguous losses is a marker for vulnerability to PTSD, 

whereas the altered processing of risky gains is a marker of resiliency to PTSD. Future research, and in 

particular longitudinal studies that compare individuals exposed to trauma to those who never 

experienced trauma, are needed to explore this possibility.  

 

Using behavioral economics to identify markers of psychopathology 
Our results add to a growing body of research, demonstrating the utility of behavioral economics in 

studying psychopathology (Paulus and Yu 2012; Pushkarskaya et al. 2015; Buckholtz et al. 2017; Konova 

et al. 2019). Replicating the previous behavioral study (Ruderman et al. 2016), we confirmed the 
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association between higher PTSD symptom severity and greater ambiguity aversion in losses, in an 

independent combat veteran sample. We also identified greater aversion to risk in gains in veterans with 

PTSD, likely due to a task design with increased range and variance of monetary outcomes, that provides 

higher sensitivity for capturing true uncertainty attitudes. Our neural measure allowed us to also quantify 

individual and group differences in neural sensitivity to rewards and punishments. Previous studies have 

shown alterations in the neural processing of aversive outcomes in individuals with PTSD, in various 

brain areas, including several medial and lateral prefrontal regions. Many of these studies, however, used 

fear and trauma-related stimuli  (Hayes, Hayes, and Mikedis 2012). Here we show that activation in the 

same brain areas is affected by PTSD symptoms even in an economic decision task, completely unrelated 

to the trauma. This raises the possibility of developing treatment methods in the domain of decision 

making under uncertainty, which does not require the patients to be reminded of traumatic experiences. 

Several previous studies have also reported altered reward processing in PTSD  (Nawijn et al. 2015), 

including reduced expectation of uncertain monetary outcomes  (Hopper et al. 2008; May and Wisco 

2019) and decreased differentiation between monetary gains and losses in the striatum (Elman et al. 

2009). Our experimental approach allowed us to estimate individual uncertainty attitudes during active 

decision making under four unique contexts. We applied a well-established computational model to infer 

these behavioral individual differences from the observed choice behavior, rather than estimate them 

through self-reports, and use the individual differences in the analysis of the neural data. Interestingly, 

participants’ self-reported risk-taking on the DOSPERT questionnaire was not strongly correlated with 

their PTSD symptom severity, suggesting that our method for estimating uncertainty attitudes through a 

behavioral task is likely more sensitive for capturing subtle differences associated with clinical symptoms.  

Neural processing of rewards and punishments is influenced by PTSD symptom 
By including both monetary gains and losses in the task design, our results illuminate the basic 

mechanisms of neural processing of rewards and punishments in two ways. First, our data suggest that 

neural processing of positive and negative outcomes may be realized through two distinct circuits in our 

sample of combat veterans, regardless of clinical symptoms. While rewards are processed primarily in 
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medial parts of the brain, punishments are processed in lateral regions. This medial-lateral segregation 

and, more generally, the separate neural representation of rewards and punishments have been reported in 

previous fMRI studies (O’Doherty et al. 2001; Yacubian et al. 2006; Kim et al. 2014). Single unit 

recordings from non-human primates also indicate different populations of vmPFC neurons (Monosov 

and Hikosaka 2012) and dopaminergic neurons (Fiorillo 2013) responding to primary appetitive and 

aversive outcomes. Other studies, however, reported overlap between representations of gains and losses, 

supporting the common currency hypothesis (Tom et al. 2007; Fujiwara et al. 2009; Kahnt et al. 2014). 

Some of the discrepancies between the findings may stem from differences in task design. In particular, 

simultaneous processing of gains and losses, for example when considering mixed lotteries (Tom et al 

2007), may lead to overlapping representations of gains and losses, whereas presentation of gains and 

losses in separate blocks, like in our design, may unravel differences in their neural representation. The 

separate involvement of medial and lateral brain regions in the valuation of gains and losses also points to 

an intriguing link to the default mode network which includes the mPFC and PCC, and the executive 

function network which includes the dlPFC and PPC. Also referred to as the task-negative and task-

positive networks, these two networks are thought to be involved in the self-referential thinking and 

executive control processes respectively, as well as in reward processing (Lesage and Stein 2016). One 

hypothesis is that attention is shifted inward and outward in response to valuation of rewards and 

punishments respectively. Research has also shown the relationship between PTSD symptom severity and 

decreased default mode network strength (Akiki et al. 2018), providing evidence of further influence of 

PTSD on the involvement of these networks in neural processing of rewards and punishments. 

Second, we identified a shift from value-encoding to saliency-encoding in the brains of individuals who 

developed PTSD following trauma exposure (Fig 10). This shift could potentially imply an attention or 

arousal signal, that leads to avoidance of aversive outcomes like uncertain monetary gains or losses. 

Several previous studies examined the neural processing of value and saliency and revealed both distinct 

and overlapping regions for each type of encoding. Value signals were found in ventral striatum, parietal 
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cortex, OFC, rostral ACC, and saliency signals were found in ventral striatum, rostral ACC, dorsal ACC, 

anterior insula by both univariate and multivariate analyses (O’Doherty et al. 2001; Yacubian et al. 2006; 

Tom et al. 2007; Fujiwara et al. 2009; Litt et al. 2011; Kim et al. 2014; Kahnt et al. 2014; Zhang et al. 

2017). To our knowledge, our results are the first to recognize the influence of psychiatric symptoms on 

the value/saliency-encoding pattern. PTSD is highly comorbid with symptoms of depression and anxiety, 

and our clinical PCA results also suggest that general affective symptoms likely influence these processes 

(Supplementary Fig 4). Additionally, we found that trauma symptoms are also related to neural 

representation of subjective value, but only of ambiguous loss lotteries in vmPFC. Although we did not 

find the effect of trauma symptom in the domain of risky gains and in ventral striatum, this raised the 

possibility that trauma exposure has additional influence on sensitivity to monetary outcomes when they 

are aversive. Future research could investigate more generally how trauma exposure, as well as the 

transdiagnostic concepts of depression and anxiety, could additionally influence the neural processing of 

aversive stimuli. 

One concern in our investigation of neural representation of value is that the range of subjective values is 

lower in the group of veterans of PTSD because of their higher aversion to uncertainty, which could 

influence the sensitivity of the neural response to value differences. It should be noted, however, that our 

main conclusion is based on a difference in the direction of correlation (negative vs. positive), rather than 

a difference in the magnitude of slope of the correlation (Fig 7A, 8A, and 9D). This represents a 

substantial difference in the shape of subjective-value encoding and would not be affected by group 

difference in the range of subjective values.  

 

Investigating the influence of trauma-related psychopathology beyond fear 
Previous studies of PTSD often focused on the neural processing of fear and trauma, and identified both 

functional and structural abnormalities in amygdala, hippocampus, and vmPFC (Hayes, Hayes, and 

Mikedis 2012; Admon, Milad, and Hendler 2013; Wolf and Herringa 2015; Rabellino et al. 2016; Homan 

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted April 16, 2020. . https://doi.org/10.1101/2020.04.14.041467doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.14.041467
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 
 

et al. 2019). Other studies have looked into more general cognitive processes and found blunted neural 

activation to monetary rewards (Sailer et al. 2008; Elman et al. 2009). In our study using a more nuanced 

computational approach, PTSD symptoms were associated with increased neural sensitivity to rewards 

and altered direction of sensitivity to punishments. While the sensitivity to rewards may seem at odds 

with the previous studies, it should be noted that in those studies reward signals were defined as the 

difference in activation to gains and losses. A weaker contrast in individuals with PTSD could stem from 

a weaker reward signal, but also from a stronger punishment signal, consistent with a U-shaped saliency 

representation, as we report here, which essentially indicates that both highly salient positive and negative 

outcomes elicit similar magnitude of neural activation. With this being said, in the reward domain, we do 

find evidence of surprisingly stronger value sensitivity in PTSD (Fig 7 and 8C), and interpret the lack of 

sensitivity to reward in combat controls as a potential resiliency marker to PTSD symptoms. This result is 

in the opposite direction of Sailer and colleagues’ finding of lower gain-related activation in PTSD. Many 

potential factors could contribute to this discrepancy, such as female participants, non-trauma-exposed 

controls, mixed types of trauma, and different task paradigm in Sailer and colleagues’ study, which opens 

up many interesting future directions of investigating neural sensitivity to reward in PTSD. Among all 

these factors, investigating the specific effect of combat trauma is particularly interesting, as uncertainty 

incorporated in our study (while not in Sailer and colleagues’) is a central component of the battlefield 

experience. Furthermore, the resiliency marker in combat controls indicated by our data points to the 

uniqueness of combat veterans who did not develop PTSD symptoms. Further evidence from non-

combat-exposed healthy controls should be combined to fully elucidate the existence of such resiliency 

marker. 

In line with the NIMH RDoC, we did not exclude veterans with history of substance abuse, to allow for a 

diverse representative sample of trauma exposed symptomatology. We controlled for substance abuse by 

conducting urine test and breathalyzer for anyone with substance abuse history or if we suspected any 

intoxication, and excluded those with positive results. The severity for substance abuse history in our 
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sample was low and did not vary too much as measured by the Addiction Severity Index (ASI-alcohol: 

median = 0.089, range = [0, 1.47]; ASI-drug: median = 0, range = [0, 0.092]). Future research could better 

control for substance abuse history and medication, and potentially look into the pharmacological effect 

involving the dopamine and serotonin systems, which are crucial for value-based decision making 

(Castrellon et al. 2019; Macoveanu 2014).  

It should also be noted that our study could not establish causal relationship between decision making 

under uncertainty and the development of PTSD symptoms. Heightened aversion to uncertainty could 

possibly predispose individuals to developing PTSD symptoms, and on the other hand, acquiring PTSD 

symptoms could result in altered uncertainty attitudes. There is some evidence, however,  that risk attitude 

is correlated with relatively stable biomarkers including structural volume of right posterior parietal 

cortex (Gilaie-Dotan et al. 2014), structural and functional connectivity of the amygdala (Jung et al 

Neuron 2018) and genetic variations (Zyphur et al. 2009). These pieces of evidence might indicate that 

risk attitude is a personal trait, raising the possibility of its predisposing effect on the development of 

PTSD symptoms. Less evidence exists for biomarkers of ambiguity attitude, although there is some 

evidence for a genetic association among females (Chew, Ebstein, and Zhong 2012). Further longitudinal 

studies comparing veterans pre- and post- military service may disentangle the role of pre-existing 

uncertainty attitudes on the development of PTSD from the subsequent impact of PTSD symptomatology 

on uncertainty attitudes. 

Decision making under risk and ambiguity has also been studied in relation with other psychiatric 

disorders, including higher ambiguity aversion and choice inconsistency in individuals with Obsessive 

Compulsive Disorder (Pushkarskaya et al. 2015), and decreased ambiguity aversion in individuals with 

antisocial personality disorder (Buckholtz et al. 2017).  Interestingly, a recent longitudinal study 

demonstrated transient increased in tolerance to ambiguity before relapses in opioid users undergoing 

treatment (Konova et al. 2019). Overall, these efforts to study psychiatric disorders using behavioral 
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economics approaches could collectively lead to both early identification of behavioral and biological 

factors at risk for symptom development, and more effective treatment. 

 

Methods 
Participants 
68 male veterans (ages: 23.6-74.6; mean ± standard deviation: 39.4 ± 11.5), who had been deployed and 

exposed to combat, were recruited. Participants either had current diagnosis of PTSD at the time of the 

study or were never diagnosed with PTSD (controls). Due to the small proportion of female combat veterans 

(15% of female in Army 2019, Department of Defense), we only included male participants. PTSD 

diagnosis was based on the Clinician Administered PTSD Scale for DSM-4 (CAPS) (Blake et al. 1995). 

Data from 10 participants were excluded due to a large number of missing responses or low correct response 

rate in catch trials in the main task (see Task design and Manipulation check), resulting in 58 participants 

(ages: 23.6-67.0; mean ± standard deviation: 37.3 ± 8.9) whose behavioral data are reported. Imaging data 

from 10 additional participants were excluded due to excessive movement in the scanner, or because their 

data were collected using different scanning parameters (5 participants), resulting in 48 participants (ages: 

23.6-67.0; mean ± standard deviation: 37.4 ± 9.2), whose neural results are reported. Full characteristics of 

the sample included in the analysis are reported in Table 1. Seven participants also took part in a previous 

behavioral study (Ruderman et al. 2016) using a similar paradigm, and these participants are included in 

both behavioral and imaging analysis. It should be pointed out that two of these participants were diagnosed 

as PTSD in the previous behavioral study but were grouped into combat controls who never developed 

PTSD in this imaging study. This discrepancy could be due to the inaccuracy of subjective report at the 

time of the behavioral study, or of the imaging study, and could not be resolved. It adds the noise to our 

analysis either in the behavioral results or in the current imaging study. Behavioral results excluding these 

seven recurring participants were also reported in Supplementary Fig 2. 
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The study was approved by the Yale University Human Investigating Committee and the Human Subjects 

Subcommittee of the VA Connecticut Healthcare System, and compliance with all relevant ethical 

regulations was ensured throughout the study. All participants gave informed consent and were 

compensated with $100 for their participation, plus a variable bonus ($0-$240) based on choices they made 

in the task (see Experimental design).  

 

Experimental design 
The study is composed of three separate visits on three different days (Fig 1A). On the first day (Screening 

Day), recruited participants went through clinical interviews for screening. After decided as eligible for the 

study, participants went through two study sessions, and in each session went through an fMRI scan of a 

decision making task under uncertainty. The task engaged participants in making decisions between a sure 

monetary outcome and an uncertain monetary outcome with either known (risky) or unknown (ambiguous) 

outcome probability, in scenarios of both gaining and losing money (Fig 1B, see details in Task design 

below). On each trial, participants viewed the two options side-by-side, and made a choice after a fixed 

duration of 6 seconds for evaluation (Fig 1D). To prevent learning, chosen option was not played out during 

the scan, and one randomly selected trial was realized only at the end of the experiment. The task designs 

were identical for the scans on Day1 and Day2, and we separated them into two days mainly due to the 

need to limit the scanning time during each visit. Participants were introduced to the task at the beginning 

on the first scanning day (Day1) and were reminded of the study on the second scanning day (Day2). Extra 

non-clinical tests of intelligence and questionnaires were collected at the end of Day2.  

Clinical assessment and exclusion criteria 
Participants were recruited through flyers and were screened by clinicians at West Haven Veterans Affairs 

hospital. Participants went through the Structured Clinical Interview for DSM-4 (SCID) (First et al. 1997) 

and the Clinician Administered PTSD Scale (CAPS) (Blake et al. 1995), on which the PTSD diagnosis was 

mainly based. Other than CAPS, we also collected the following measurements in the screening session:  
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PTSD Checklist for DSM-5 (PCL-5) (Weathers et al. 2013), Beck’s Depression Inventory (BDI) (Beck et 

al. 1961), State-Trait Anxiety Inventory (STAI) (Spielberger and Gorsuch 1983), Dissociative Experiences 

Scale (DES) (E. M. Bernstein and Putnam 1986), Combat Exposure Scale (CES) (Keane et al. 1989), and 

Childhood Trauma Questionnaire (CTQ) (D. P. Bernstein et al. 2003). Participants with the following 

conditions were excluded after screening: psychosis, bipolar disorder, traumatic brain injury, neurologic 

disorder, learning disability, and ADHD. We did not exclude veterans with history of substance abuse, to 

allow for a diverse representative sample of trauma exposed symptomatology. However, we conducted 

urine test and breathalyzer for anyone with substance abuse history or if we suspected any intoxication, and 

excluded those with positive results. Participants also completed other questionnaires including 

demographic information, Behavioral Avoidance/Inhibition (BIS/BAS) Scales (Carver and White 1994), 

the Barratt Impulsiveness Scale (BIS-11) (Patton, Stanford, and Barratt 1995), and Doman-Specific Risk-

Taking (DOSPERT) Scale (Blais and Weber 2006). Kaufman Brief Intelligence Test (KBIT) (Kaufman 

1990) was also administered after scanning as a measure of non-verbal intelligence. 

 

Decision making under risk and ambiguity 
Task design 
The experimental design was based on a previous neuroimaging study (Grubb et al 2016) and similar to the 

design of a previous behavioral study in combat veterans (Ruderman et al 2016).  

The experiment consisted of choices about risky and ambiguous gains and losses. On gain trials, participants 

made choices between a fixed monetary gain ($5) and a lottery with chance of a monetary gain but also 

chance of no gain at all ($0) (Fig. 1B, left). Lottery outcome probability was represented by an image of a 

rectangle with blue and red areas. On each trial, one color was associated with a monetary gain, and the 

other color was associated with the null outcome ($0). The size of each colored area represented the 

probability of getting the outcome associated with it. In half of the trials, outcome probability was fully 

known (25%, 50% or 75%; ‘Risk’, Fig. 1C left). In the other half of the trials, probability was only partially 
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known. This was achieved by covering the middle part of the colored image with a grey bar (‘Ambiguity’, 

Fig. 1C right). On different trials the bar covered 24%, 50% or 74% of the image, creating three levels of 

ambiguity. For example, the lower left example in Fig 1B represents a lottery with a chance between 25% 

and 75% of winning $27. Each of the risk and ambiguity levels corresponded to an actual physical bag with 

a total number of 100 red and blue chips inside. For risky bags (corresponding to the risk level images), the 

exact numbers of red and blue chips were the same of the numbers shown on the images. For ambiguous 

bags (corresponding to the ambiguity level images), the exact numbers of red and blue chips were within 

the range shown on the image. Participants were shown these bags during study introduction and were 

informed that the risk and ambiguity images they saw during the task corresponded to these bags. The bags 

would be used to actualize participants’ choice, and they were free to inspect the contents of the bags after 

finishing the study. The potential monetary gain of the lottery varied within a wide range ($5, 6, 7, 8, 10, 

12, 14, 16, 19, 23, 27, 31, 37, 44, 52, 61, 73, 86, 101, and 120). The non-zero monetary outcome was 

randomly related to red or blue, so the color was not related to whether the outcome was preferable.  

Loss trials were similar to gain trials, except that participants chose between losing $5 for sure, and playing 

a lottery with chance of losing money, but also chance of not losing any money ($0) (Fig 1B, right). Same 

as gain trials, half of the loss lotteries were risky and half of them were ambiguous, and the outcome 

probability was presented in the same way. The potential monetary loss of the lottery varied within the 

same range but of negative monetary outcomes (–$5, 6, 7, 8, 10, 12, 14, 16, 19, 23, 27, 31, 37, 44, 52, 61, 

73, 86, 101, and 120). 

Fig 1D illustrates the timing of each trial. Participants had 6 seconds to look at the options and consider 

their decision. A green circle then appeared in the middle of the screen, cueing participants to make a choice 

within 3.5 seconds. If they did not register a response, the response would be counted as missing. A 

feedback image of two side-by-side squares was shown for 0.5 second immediately following the button 

press to confirm the choice, with the yellow square indicating the side participants chose. The feedback was 

followed by a jittered inter-trial-interval of a white circle, the duration of which was among 4, 6, among 8 

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted April 16, 2020. . https://doi.org/10.1101/2020.04.14.041467doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.14.041467
http://creativecommons.org/licenses/by-nc-nd/4.0/


36 
 

seconds plus the remainder of the response time limit (3.5s – reaction time). To avoid learning, chosen 

lotteries were not played during the scan. In both the gain and the loss domains, all risk and ambiguity 

levels were paired with all amount levels, resulting in 120 unique gain trials ((3 + 3) × 20) and 120 unique 

loss trials. Each trial type was presented once. All trials were grouped into 8 blocks of 30 trials each. Each 

block contained either only gain trials or loss trials, but risky and ambiguous trials were mixed in a random 

order.  This resulted in 4 gain blocks and 4 loss blocks. Due to the length of the experiment, these blocks 

were divided into two scanning sessions on two separate days. The interval between two scanning sessions 

was on average 12.6 days.  

 

Manipulation check 
To verify that participants understood the task, and that they aimed to maximize earnings and minimize 

losses, we included 12 trials in which the potential lottery outcome was identical to the certain amount 

(±$5). In these trials, one option is clearly better than the other (e.g. a certain gain of $5 should be preferred 

over a 50% chance of gaining $5). Data from participants who chose the inferior option on more than 50% 

of these trials were excluded.  

 

Task administration 
On the Day1, participants were introduced to the task, and were required to correctly respond to several 

questions to make sure they understand the task and the lottery presentation. They also practiced 16 trials 

before the actual task. After the introduction, each participant was endowed with $120 (the maximal 

possible loss), and then went through two gain and two loss blocks, whose order was counterbalanced across 

participants (either Gain-Gain-Loss-Loss or Loss-Loss-Gain-Gain). Each block contained 30 trials together 

with an additional trial in the beginning (a choice between +/-$5 and a lottery offering +/-$4) to capture the 

initial burst of activity. The added one trial was excluded from analysis.  
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On the Day1, participants were first reminded of the task, and then went through another four blocks of the 

choices (two gain and two loss), in an opposite order to what they had on Day2. Following the scanning, 

one trial out of the 240 trials (including both gains and losses) was randomly selected and realized. If the 

participant chose the sure option, $5 were added to or subtracted from the $120 endowment. If the 

participant chose the lottery, she would play the lottery by pulling a chip out of the physical bag 

corresponding to the lottery image, and the outcome related to the color of the pulled-out chip would be 

added to or subtracted from the $120. At the end of the second session, KBIT, demographic questionnaires, 

BIS/BAS, and BIS-11 were collected.  

 

MRI scans 
MRI data were collected with two scanners (due to scanner upgrade) at the Yale Magnetic Resonance 

Research Center: Siemens 3T Trio (37 participants, 29 reported in imaging results) and 3T Prisma (31 

participants, 19 reported in imaging results), using a 32-channel receiver array head coil. High resolution 

structural images were acquired by Magnetization-Prepared Rapid Gradient-Echo (MPRAGE) imaging (TR 

= 2.5 s, TE = 2.77 ms, TI = 1100 ms, flip angle = 7°, 176 sagittal slices, voxel size = 1 × 1 × 1 mm, 256 × 

256 matrix in a 256 mm field-of- view, or FOV). Functional MRI scans were acquired while the participants 

were performing the choice task, using a multi-band Echo-planar Imaging (EPI) sequence (TR= 1000 ms, 

TE= 30ms, flip angle=60°, voxel size = 2 × 2× 2 mm, 60 2 mm-thick slices, in-plane resolution = 2 × 2 

mm, FOV= 220mm).  

 

Analysis 
Analysis of clinical symptoms and trauma-related measures  
We used the 5-factor model of PTSD (Harpaz-Rotem et al. 2014) to assess multidimensional PTSD 

symptoms, including re-experiencing, avoidance, emotional numbing, dysphoric arousal, and anxious 

arousal. We calculated both the overall symptom severity, and the 5 factors’ symptom severities by 
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breaking down the questionnaire items. To account for comorbidities, we conducted principal component 

analysis (PCA) on all clinical and trauma-exposure measurements, including the 5 factors of CAPS, 

Beck’s Depression Inventory (BDI), state and trait anxiety indexes separately from State-Trait Anxiety 

Inventory (STAI), Dissociative Experiences Scale (DES), Combat Exposure Scale (CES), and Childhood 

Trauma Questionnaire (CTQ). 

Model-based Risk and ambiguity attitudes estimation  
We fitted each participant’s choice data into a behavioral economics model that was used in previous studies 

(Levy et al. 2010; Ruderman et al. 2016). The model fitting was conducted separately for gain and loss 

choices. The model separates the decision process into two steps: valuation and choice. In the valuation 

step, the subjective value (SV) of each option is modelled by equation (1),  

𝑆𝑆𝑆𝑆 = �𝑃𝑃 − 𝛽𝛽 �𝐴𝐴
2
�� × 𝑉𝑉𝛼𝛼                                                 (1) 

where P is the outcome probability (0.25, 0.50, or 0.75 for risky lotteries, 0.5 for ambiguous lotteries, and 

1 for the certain option); A is the ambiguity level (0.24, 0.5, or 0.74 for ambiguous lotteries; 0 for risky 

lotteries and the certain amount); V is the non-zero outcome magnitude of the lottery or the amount of 

money of the certain option.  For choices in the loss domain, amounts are entered with a positive sign. Risk 

attitude was modeled by discounting the objective outcome magnitude by a participant-specific parameter, 

α. In the gain domain, a participant is risk averse when α < 1, and is risk seeking when α > 1. Because we 

fitted the choice data in the loss domain using positive outcome magnitudes, the participant is risk averse 

when α > 1, and is risk seeking when α < 1. Ambiguity attitude was modeled by discounting the lottery 

probability linearly by the ambiguity level, weighted by a second participant-specific parameter, β. A 

participant is averse to ambiguity when β > 0, and is ambiguity seeking when β < 0 in the gain domain. In 

the loss domain, participant is averse to ambiguity when β < 0, and ambiguity seeking when β > 0. 

The choice process is modeled by a standard soft-max function (equation 2),  

𝑃𝑃V = 1
1+𝑒𝑒𝛾𝛾�𝑆𝑆𝑆𝑆L−𝑆𝑆𝑆𝑆C�

                                                     (2) 
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where PV is the probability of choosing the lottery option, SVC and SVL are the subjective values of the 

certain option and the lottery respectively, calculated by equation (1); γ is a participant-specific noise 

parameter.  

 

The model-fitting was conducted in MATLAB (R2018b) through maximum likelihood. We primarily 

used Matlab function fminunc to minimize the negative log-likelihood function, and switched to using 

fminsearch if it failed to converge. Under our task design, we could detect risk parameters (α) in the range 

of [0.0905, 7.6036], and ambiguity parameters β in the range of [-4.0303, 4.1667]. These constraints were 

calculated based on the range of uncertainty levels and monetary magnitudes in our task design, same as 

the procedure used in previous studies (Ruderman 2017). The lower boundary of α was determined by 

equating the subjective value of the best lottery (75% chance of $120) with the subjective value of the 

certain option ($5), using equation (1). Similarly, to determine the upper boundary of α, we equated the 

subjective values of the worst lottery (25% chance of $6) and the certain option ($5). Because the choices 

of ambiguous lotteries also depend on the risk attitude α, the boundary values of β also depend on α. So 

we simply calculated all possible β’s by equating the subjective values of each ambiguous lottery and the 

certain option ($5), using the boundary values of α. The boundary values of β were then determined by 

the minimum and maximum of all calculated β’s. Even without constraining α and β during the modeling 

fitting procedure, the fitted results of all participants included in behavioral and imaging analysis were 

within this range. We fitted each participant’s choices combining data from two sessions and obtained 

four attitudes: risk attitudes for gains and losses, ambiguity attitudes for gains and losses. For consistency, 

we transformed all attitudes in the following way such that negative values indicate aversion and positive 

values indicate seeking: risky gains: α – 1, risky losses: 1 – α, ambiguous gains: - β, ambiguous losses: β. 

Since participants performed the task on two separate sessions, we also fitted each session’s choice data 

separately. These fitted parameters from separate sessions were used to calculate trial-wise subjective 
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values of the lotteries for GLM neural analysis, because they could capture the subjective values more 

accurately for searching neural activity change induced by variations of subjective values. 

We then analyzed the fitted risk and ambiguity attitudes both in group comparisons between veterans with 

PTSD and combat controls, and through a dimensional approach by looking at their correlation with 

clinical symptoms and other continuous measurements. We also took into account of the potential 

influence of demographic factors (age, income, education and intelligence) on uncertainty attitudes, by 

conducting multi-factor ANOVAs through Generalized Linear Model: 

Uncertainty attitude in one decision condition (e.g. Risk attitude in gains) ~ CAPS total + age + income 

(categorical) + education (categorical) + intelligence 

In the data we collected, age and intelligence were continuous variables, income was a categorical 

variable with 10 possible levels, and education was a categorical variable with 6 possible levels. All 

continuous variables were standardized before fitting the linear model.  

 

MRI data preprocessing 
Preprocessing of MRI data were conducted in BrainVoyager (Version 20.2.0.3065). Anatomical images 

were normalized to the standard brain template in the Talairach space for each participant. Steps of 

preprocessing of functional data included motion correction, slice scan time correction (cubic spline 

interpolation), temporal filtering (high-pass frequency-space filter with cut-off cycle of 3), spatial 

smoothing (Gaussian filter with 8mm full-width at half-maximum), co-registration with high-resolution 

standardized anatomical data, and normalization to the Talairach space. Scan data with movement of over 

2 mm in any direction were excluded from analysis.  

fMRI GLM first-level analysis 
Analysis of fMRI data were conducted in Neuroelf (Version 1.0) through MATLAB (Version R2018b) 

for the purpose of fitting generalized linear models (GLM), extracting regions-of-interest (ROI) data, and 
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visualizing brain statistical maps. Further statistical analysis and visualization were conducted in R 

(Version 3.5.1) (R Core Team 2018) with packages ez (Lawrence 2013), psych (Revelle 2018), nlme 

(Pinheiro et al. 2013), emmeans (Russell 2018), ggplot2 (Wickham 2016), and PerformanceAnalytics 

(Peterson and Carl 2019). We investigated the neural response under different decision conditions through 

fitting pre-processed functional signals with generalized linear models (GLM). The pre-processed fMRI 

signal time course was first converted to percent signal change within each scanning block, and activity of 

each voxel was modeled by GLM predictors convolved with a standard double-gamma hemodynamic 

response function. 

In the first GLM, we looked at the general activity during decision making by including four binary 

predictors for all four decision conditions: ambiguous gains, risky gains, ambiguous losses, and risky 

losses. Each binary predictor was modeled as a box-car function, with the duration of choice display 

(6TR). We modeled choice response of all trials by another binary predictor with the duration of 1TR at 

the time of button press, and missing responses were not modeled. We also included nuisance predictors 

of 6 motion correction parameters (translation and rotation in the x, y, and z directions) in the GLM to 

account for influence of head motions on the neural activity.  

In a second GLM, we modeled the neural response to the variation of trial-wise subjective value of the 

lottery by including the subjective value as a parametric modulator for each of the four decision condition 

binary predictors. Subjective value of the lottery in each trial was calculated uniquely for each participant 

by equation (1) (See section Model-based risk and ambiguity attitudes estimation), by taking the fitted α 

and β for each participant under each domain of either gains and losses. Because we fitted the choice data 

in the loss domain by inputting the positive outcome value, we flipped the sign of the calculated 

subjective value back in the loss domain. We calculated the subjective values taking α’s and β’s fitted 

from the two sessions separately, because it would make the estimate of neural response to subjective 

value variation more accurate. Subjective values were normalized within each scanning block before 

GLM fitting, so that the estimated effect reflected each participant’s neural response to the variation of 
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subjective value, rather than to its absolute magnitude. Predictor of choice response and nuisance 

predictors of motion correction was included in the same way as above in this GLM.  

In the third and the fourth GLMs, we aimed to further investigate the shape of neural representation of 

subjective values. In both GLMs, we compared gains and losses on the same scale, and only separated 

trials by uncertainty types. Thus, we included two binary predictors, ambiguous trials and risky trials, in 

both GLMs, and modeled them as box-car functions with a duration of choice display (6TR). In the third 

GLM, we included the subjective value itself as a parametric modulator to accompany each binary 

predictor, to look at the monotonical value-encoding of subjective values. In the third GLM, we included 

the absolute value of subjective value as a parametric modulator to accompany each binary predictor, to 

look at the U-shaped saliency-encoding of subjective values. The predictor of choice response and 

nuisance predictors of motion correctly were included in the same way as above in these two GLMs.   

  

fMRI GLM second-level analysis 
After individual GLM fitting, random-effect group analysis was conducted to test whether the mean effect 

of interest was significantly different from zero across participants, or significantly different between 

groups by contrasting veterans with PTSD and combat controls. We also took a dimensional approach to 

test whether the predictor effects were related to PTSD and other clinical symptom severities. The tests 

were conducted both in a whole-brain search and in ROIs.  

In whole-brain analyses, all statistical maps were thresholded at p < 0.001 per voxel, and corrected for 

multiple comparisons using cluster-extent correction methods through Alphasim by AFNI (Cox 1996) to 

control family-wise error (FWE) rate at 0.05.   

In ROI analyses investigating the general neural activity during decision making based on the first GLM, 

we chose the region in vmPFC whose activity showed negative correlation with CAPS total in the whole-

brain analysis. We further investigated which factor of the PTSD symptoms drove this negative 
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relationship, by fitting a linear model including all five symptoms based on the CAPS measurements 

together with age and intelligence:  

Averaged GLM beta over all four decision conditions ~ re-experiencing + avoidance + emotional 

numbing + dysphoric arousal + anxious arousal + age + intelligence 

We then conducted variables subset selection to identify which symptom cluster(s) best influenced 

vmPFC neural activity, using exhaustive search through the package “leaps” (Lumley and Miller 2009) in 

R. We compared regression models including all possible combination of variables for each given number 

of predictors of this linear model (ranging from including only one predictor to including all seven 

predictors), and selected the best model with the lowest Bayesian Information Criterion (BIC). The best 

linear model identified by this exhaustive approach could identify both the best number of symptom 

clusters to include, as well as which symptom cluster(s). 

In ROI analyses investigating subjective value representation based on the second, third and fourth 

GLMs, we chose two brain regions, vmPFC and ventral striatum, based on the meta-analysis by Bartra et 

al. (Bartra, McGuire, and Kable 2013), which showed value encoding of different categories of rewards. 

To control for the potential influence of demographic factors on neural activity, we conducted multi-

factor ANOVAs through Generalized Linear Model that included the PTSD symptom and demographic 

factors to explain neural subjective value signal, similar to the behavioral analysis of uncertainty attitudes: 

Neural subjective value signal of a type of lottery (e.g. risk gain lottery) ~ CAPS total + age + income 

(categorical) + education (categorical) + intelligence 

All continuous variables were standardized before fitting the linear models.  

 

Leave-one-subject-out (LOSO) procedure 
After identifying regions from the whole-brain analysis from our data, in which the neural representation 

of subjective values was influenced by PTSD symptom severity, we took a leave-one-subject-out (LOSO) 
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approach to define these ROIs in an un-biased way for each participant. For each left-out participant, we 

defined a ROI from a whole-brain analysis using data from all other participants, so this ROI definition 

was not influenced at all by the left-out participants. We then sampled neural signals of the left-out 

participant’s data from this ROI. We repeated the process for all participants.    

 

Using behavioral and neural measures to predict PTSD symptom variation 
After identifying vmPFC in a whole-brain analysis as the area showing negative correlation between its 

activity and PTSD symptom severity, we want to investigate whether symptom variation could be better 

explained by behavioral uncertainty attitudes or by neural activity during decision making. We sampled 

fitted GLM betas of each decision condition (ambiguous losses, risky losses, ambiguous gains, and risky 

gains) based on the first GLM explained above from this vmPFC area. We then constructed a linear 

model using general neural activity in four decision conditions to explain PTSD symptom severity 

indicated by CAPS total: 

Neural model: CAPS total ~ neural activity under risky gains + neural activity under ambiguous gains + 

neural activity under risky losses+ neural activity under ambiguous losses + age + intelligence  

Similarly, we constructed a linear model using behavioral uncertainty attitudes in four decision conditions 

to explain PTSD symptom severity: 

Behavioral model: CAPS total ~ risk attitude in gains + ambiguity attitude in gains + risk attitude in 

losses + ambiguity attitude in losses + age + intelligence 

We also constructed a full model including both neural and behavioral measures: 

Full model: CAPS total ~ risk attitude in gains + ambiguity attitude in gains + risk attitude in losses + 

ambiguity attitude in losses + neural activity under risky gains + neural activity under ambiguous gains + 

neural activity under risky losses+ neural activity under ambiguous losses + age + intelligence 
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All variables were standardized before fitting the linear model. All models included age and intelligence 

to control for these two demographic factors. We compared these three model by BIC.  
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