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ABSTRACT

Obesity is a heterogeneous condition that is affected by physiological, behavioral, and environmental factors. Value-
based decision making is a useful framework for integrating these factors at the individual level. The disciplines of
behavioral economics and reinforcement learning provide tools for identifying specific cognitive and motivational
processes that may contribute to the development and maintenance of obesity. Neuroeconomics complements these
disciplines by studying the neural mechanisms underlying these processes. We surveyed recent literature on indi-
vidual decision characteristics that are most frequently implicated in obesity: discounting the value of future out-
comes, attitudes toward uncertainty, and learning from rewards and punishments. Our survey highlighted both
consistent and inconsistent behavioral findings. These findings underscore the need to examine multiple processes
within individuals to identify unique behavioral profiles associated with obesity. Such individual characterization will
inform future studies on the neurobiology of obesity as well as the design of effective interventions that are indi-

vidually tailored.
https://doi.org/10.1016/j.biopsych.2021.09.019

VALUE-BASED DECISION MAKING IN OBESITY

Over the last 50 years, obesity rates in the United States have
nearly tripled, and 40% of American adults are now considered
obese (1). Obesity has detrimental health consequences to the
individual and leads to tremendous costs to society (2). From a
biomedical perspective, obesity results from sustained energy
imbalance, with intake exceeding expenditure (3). This
imbalance is affected by a myriad of factors, including both
individual characteristics (genetic, neurobiological, and psy-
chological) and environmental influences (cultural, economic,
and public policy) (4). In recent years, there has been a growing
understanding of the need to identify behavioral profiles that
may be associated with obesity (5). Value-based decision
making is a useful framework for integrating many of the sig-
nals influencing feeding behavior. In this framework, decisions
about energy consumption and expenditure involve maximi-
zation of subjective value, or the utility of the choice to the
individual decision maker. The subjective value of a food op-
tion can be computed by integrating its different attributes
(6)—including smell and taste (7), perceived health, (8) and
nutritional content (9)—with the decision maker’s goals (e.g.,
losing or gaining weight) (10) and satiety level (11). Subjective
values are also influenced by the same factors that affect
virtually any decision we make: the balance between potential
rewards and punishments (consuming highly palatable junk
food at the cost of impaired health), likelihood estimates (the
food is bound to be rewarding, but consuming it has uncertain
health outcomes), and the temporal schedule of potential
outcomes (the food is rewarding now but may lead to impaired
health in the future). While under some circumstances these
individual characteristics can be modified (12), they are broadly
considered stable traits (13,14). Individual differences in any of

860 © 2021 Society of Biological Psychiatry.

Biological Psychiatry May 15, 2022; 91:860-868 www.sobp.org/journal

these processes may therefore play a role in the development
and maintenance of obesity.

The disciplines of behavioral economics and reinforcement
learning combine experimental designs that tease apart
various decision characteristics with computational modeling,
revealing otherwise unobservable latent variables. In
behavioral-economics research, participants make a series of
choices between options whose values vary parametrically
across different attributes, such as the reward offered, the
likelihood for reward, the time of receiving the reward, and the
cost for obtaining it. In reinforcement learning paradigms,
participants sample different available options, experience the
outcomes of their choice, and learn to identify the better op-
tions. Behavior in those paradigms can be used to infer indi-
vidual decision characteristics, such as sensitivity to reward,
aversion to uncertainty, discounting of future rewards, and the
rate of learning associations between cues and outcomes.
Neuroeconomics research combines these behavioral
methods with neurobiological techniques to study the neural
basis of value-based decision making. The latent variables
revealed by the behavioral analysis are used in the neural
analysis to identify biomarkers and functional patterns that
relate to behavioral dimensions such as risk and delayed re-
wards (15).

Neuroeconomics research implicates striatal and prefrontal
regions in encoding the subjective value of available options
(Figure 1). Activity in the ventral striatum and ventromedial
prefrontal cortex (vmPFC) scales as a function of subjective
value (16) across different domains (17), including food (18),
and integrates over various nutritional attributes (19). These
subjective value representations incorporate individual char-
acteristics, such as attitudes toward uncertainty (20) and
temporal discounting of future rewards (16). Striatal and
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prefrontal areas are targets of midbrain dopaminergic inputs
from the ventral tegmental area and substantia nigra (21).
Phasic activity of these dopamine neurons encodes reward
prediction error—the discrepancy between expected and ob-
tained reward (22).

In the case of food choices, value representations are likely
modulated by homeostatic signals (18). Hormones such as
leptin, ghrelin, and insulin control satiety, hunger, and fat levels
by targeting neurons in the hypothalamus and brainstem,
whose activity can promote or inhibit feeding behaviors and
energy expenditure (23). Most relevant for the present review is
the contribution of homeostatic signals to value computations.
Rather than two separate pathways, the homeostasis and
value systems work in concert to influence behavior (6,24).

A number of studies have applied the neuroeconomics
approach to psychiatric research (25) and identified associa-
tions between specific symptoms and unique features of de-
cision making and learning across a wide range of disorders
(26-30). Recent studies have begun to apply a similar
approach to obesity, yielding interesting findings and mixed
results. This review aimed to highlight the potential of the
neuroeconomics approach to provide an integrative perspec-
tive on obesity by surveying the literature and identifying di-
rections for future research. In the following sections, we
reviewed studies that use behavioral-economics and
reinforcement-learning experimental paradigms to study de-
cision making in obesity (Table S1). Our review focused on
human studies with healthy participants but was also informed
by research on eating disorders and animal studies. We also
examined to what extent these potential links are domain
specific (occur only in the food domain) or domain general
(occur in both the monetary and food domains) (Figure 2).

We identify both consistent and variable findings across
studies. In addition to methodological differences between
studies, we suggest that these differences reflect the
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Figure 1. A schematic model of value-based de-
cision making. Value representations in the medial
prefrontal cortex (PFC) integrate external information
about potential rewards (delay, uncertainty) with in-
ternal representations of these rewards (learning,
memory) and homeostatic demands. dIPFC, dorso-
lateral PFC; dmPFC, dorsomedial PFC; Hipp., hip-
pocampus; Hyp., hypothalamus; OFC, orbitofrontal
cortex; PPC, posterior parietal cortex; VIPFC,
ventrolateral PFC; vmPFC, ventromedial PFC; VS,
ventral striatum; VTA, ventral tegmental area.

heterogeneous nature of obesity. Thus, we propose that lon-
gitudinal studies of multiple decision characteristics within in-
dividuals should be used to create an individualized behavioral
profile as a basis for behaviorally informed neurobiological
research.

INTERTEMPORAL PREFERENCES

Food choices have outcomes that extend beyond the present
moment. In particular, options that are more immediately
gratifying (such as high-calorie and high-fat food) are often
more detrimental to our future health (Figure 2A). For most
people, subjective values of future rewards diminish over time,
a phenomenon known as temporal discounting (31). To esti-
mate individual discount rates, economists typically ask par-
ticipants to make a series of choices between rewards of
different magnitudes that are received at different times (e.g.,
would you rather have $20 now or $40 in a month?).

Activation levels in the valuation system, including the
vmPFC and the striatum, are influenced by the delay in
receiving the reward and by individual discount rates (16).
Subjective value representations may be modulated by indirect
inputs from dorsolateral PFC (32). Activity in this area and its
connectivity with vmPFC were higher for choices of delayed
compared with immediate rewards and were predictive of in-
dividual discount rates (33); disruption of activity in the same
area increased preference for immediate rewards (34).
Consistent with this role, dorsolateral PFC activity may inhibit
choices of immediate food rewards (35) by modulating vmPFC
activity for tasty but unhealthy foods (36).

Discount rates are quite stable within individuals (14,37),
suggesting that they may be a personality trait and a potential
marker for unhealthy behaviors. Indeed, higher discount rates
are associated with addictive behaviors (38), including drug
use (39), smoking (40), and gambling (41). Similarly, unhealthy
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Figure 2. Decision making in the monetary and
food domains. (A) Temporal preferences depend on
how subjective value diminishes over time. In the
monetary domain, a preference for a small immedi-
ate monetary reward or a greater future reward is

@ @ f) @ determined by an individual’s discounting rate.
K Similarly, discounting of future health outcomes af-
E fects choices between outcomes with low immedi-

S

ate satisfaction (apple), but better future outcome
(good health), and high immediate satisfaction
(pizza), but worse future outcome. (B) Decision
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making under uncertainty is often assessed by
testing choices between altenatives that vary in
outcome and in the likelihood for obtaining that
outcome. In the monetary domain, a safe alternative
(right) is associated with a certain outcome (more
generally, with reduced outcome variability),
whereas a risky alternative provides a chance for a

greater reward but also a chance for a smaller one.

Analogously, in the food domain, a safe alternative

(an apple) may provide lower satisfaction, while a riskier, but more rewarding, option (pizza) may incur health costs with some probability. (C) Rewards and
punishments imply a gain or loss of money in the monetary domain. In decisions regarding food choice, some food items (pizza) may be more rewarding than
others (apple). Food choices may also incur punishments in the form of deteriorated health status. In a process of learning, gains and losses are integrated into

values that guide decisions.

food choices lead to immediate food rewards, but future
negative health outcomes (Figure 2A). Several scholars have
suggested a similar association between high discount rates
and an unhealthy diet, which in turn is associated with obesity
(42-44).

Empirical results, however, are mixed. Studies that examine
food decisions consistently report increased delay discounting
in individuals with obesity (45). Most studies, however,
examine monetary choices, and in that domain, findings are
more varied. Some studies identify increased discount rates in
individuals with obesity compared with their healthy-weight
counterparts (46-64), while others do not (65-69). One study
with a small sample reported lower monetary discounting in
individuals with obesity compared with relatives without
obesity, but this was specific to individuals committed to
weight loss (70).

Findings in eating disorders are also mixed. For example,
there are reports of either decreased (71) or increased (72)
discount rates for women with bulimia compared with control
subjects and reports of either higher (63) or similar (73) dis-
count rates in subjects with binge-eating disorder compared
with control subjects.

Methodological differences may account for some of the
mixed results in the literature, including the use of real or hy-
pothetical rewards and the modeling approach. A recent re-
view (42) suggested that incentive-compatible paradigms, in
which participants receive real rewards based on the choices
they make, were more likely to show correlation between
steeper discount rates and body mass index (BMI). Studies
also differ in sample size, demographic characteristics, and
criteria for obesity status. Still, even after accounting for all of
these factors, substantial variability remains.

UNCERTAINTY PREFERENCES

Ecological decision making often involves uncertainty. Idio-
syncratic attitudes of individuals toward uncertainty and their

ability to tolerate it may therefore play important roles in de-
cisions about food consumption and energy expenditure
(Figure 2B). Behavioral economics provides useful tools for
estimating individual attitudes toward uncertainty in the labo-
ratory (74). The simplest form of uncertainty is risk—when
probabilities for different outcomes are fully known [e.g.,
50% chance for heads or tails on a coin toss (75)].

There is some evidence that individuals with obesity and
overweight individuals tend to be more tolerant of risk in the
monetary domain compared with healthy-weight individuals
(53,76-78). Interestingly, some studies suggest that increased
risk tolerance in obesity is specific to men, whereas in women
with obesity it is reduced or unaltered (79,80). This willingness
to accept greater uncertainty for potentially higher rewards
may also play a role in eating behavior, where choosing un-
healthy but gratifying foods is accompanied by uncertain
health outcomes.

Outside of the laboratory, probabilities for different out-
comes are seldom precisely known—rather, they are at least
partly ambiguous (81). Individual attitudes toward risk and
ambiguity are not strongly correlated across individuals
(82-84) and make distinct contributions to psychopathology.
For example, individuals with posttraumatic stress disorder
show increased aversion to ambiguous, but not risky, losses
(30), while individuals with antisocial personality disorder are
more tolerant of ambiguity than healthy control subjects (85).
Similarly, transient increases in tolerance to ambiguity, but not
risk, predicted relapses in opioid users undergoing treatment
(82). These studies suggest that examining both risk and am-
biguity attitudes in obesity may be beneficial.

Another important aspect of probabilistic decisions is that
they typically involve a trade-off between gains and losses.
Loss aversion—favoring the avoidance of losses over the
pursuit of gains—is a widely observed phenomenon (86,87).
Studies that used the prospect theory formulation of loss
aversion (75) and estimated the loss aversion parameter from
behavior in risky-choice tasks did not find a significant
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difference between individuals with obesity and healthy-weight
groups (53,88). There is some evidence, however, for
increased sensitivity to losses in individuals with obesity.
Participants with obesity were more risk seeking than healthy-
weight individuals specifically in trials that did not incur large
losses (76) and exhibited greater neural differences between
losses and neutral outcomes (89). Considering its potential
centrality for health-related decisions, more studies that spe-
cifically target loss aversion using behavioral-economics ap-
proaches are still needed to clarify its role in obesity.

Similar to temporal delay, value representations in ventral
striatum and vmPFC incorporate individual attitudes toward
risk and ambiguity (20,90) as well as attitudes toward loss (17).
The level of uncertainty is reflected by activation patterns in
several brain areas, including posterior parietal cortex (83),
anterior insula (91-93), and the lateral orbitofrontal cortex
(OFC) and ventrolateral PFC (83,93-95). Activity in posterior
parietal cortex (83,96,97) as well as its structure (98,99) reflects
individual risk attitudes. The structural and functional con-
nectivity of the amygdala also reflects risk attitudes (100).
These studies outline potential neural mechanisms for
increased risk tolerance that may promote obesogenic deci-
sion making.

Overall, existing evidence suggests that in some individuals
obesity may be associated with decreased risk aversion and
increased loss aversion. Health-promoting behaviors such as
exercising and healthy diets can be viewed as losses
compared with a present lifestyle that does not include them;
at the same time, the negative outcomes of engaging in un-
healthy behaviors are uncertain. Heightened aversion to
perceived losses in lifestyle, amplified by an increased toler-
ance to the risk associated with these choices, may thus
promote obesity-inducing behaviors.

LEARNING FROM REWARDS AND PUNISHMENTS

Altered reward learning has been associated with obesity
across a number of studies (101). To quantify learning abilities,
simple paradigms present participants with repeated choices
between several cues that are predictive of different outcomes,
such as higher or lower rewards. In these tasks, learning is
assessed by the rate and magnitude of preference that par-
ticipants develop toward better alternatives. In individuals with
obesity, there is some evidence for impaired learning on such
tasks with both food and monetary rewards (102,103), but also
evidence for improved learning with food (104). In learning from
passive observation of outcomes without active choice,
women with obesity rated both cues that predicted food and
those that did not as highly predictive of food (103); no such
generalization effect was observed in the monetary domain,
where women with obesity acquired correct stimulus-reward
associations and were able to flexibly change them (103).
The inappropriate generalization of food reward learning in
individuals with obesity may result from a failure to learn from
negative prediction errors (105). This failure may be part of a
general learning abnormality in some individuals (89,102), but a
learning abnormality specific to food in others. In this frame-
work, impaired learning could contribute to obesity, as the
association between unhealthy food choices and unhealthy
(negative) outcomes is not properly learned. Impaired learning
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was also reported in participants with anorexia (106), especially
when learned cue-food associations had to be updated (107).
However, when participants were explicitly told that only one
cue could be followed by reward at any phase of the experi-
ment (precluding generalization), individuals with obesity
exhibited better learning with food (but not money) compared
with healthy-weight control subjects (104). This suggests that
subtle changes in the structure of the environment may have
substantial effects on attention and learning.

Accumulating evidence points to alterations in dopamine
function in obesity (108). In rodents, high-fat diets lead to al-
terations in dopamine signaling (109,110). In humans, high-fat
diets correspond with changes in binding potential of dopa-
mine D,/D3 receptors (111-114), indicating changes in recep-
tor availability or dopaminergic tone (115). OFC is also heavily
implicated in value encoding (116-118), and its role may be
specific to updating values with new information (119). Failure
to properly update value representations in OFC has been
shown in animal models of addiction (120) and may be similarly
involved in overeating. In a small study, activity in OFC tracked
prediction errors more accurately in healthy-weight women
compared with women with obesity (121). Women with
anorexia included in the same study showed stronger encod-
ing of prediction errors in OFC compared with healthy control
subjects (121), suggesting dissociable mechanisms for
impaired learning in obesity and anorexia.

The simple paradigm used in many of these studies is
helpful in identifying robust learning differences but is not
sensitive to more subtle aspects of learning. Two-stage
learning paradigms (122) allow distinction between two
reinforcement learning strategies: model-free learning and
model-based learning (123). While model-free learning relies
on simple cue-outcome or action-outcome associations,
model-based learning strategies incorporate the structure of
the environment into the decision-making process. Model-
based learning is more computationally demanding than
model-free learning, but it allows for more flexible and context-
specific decisions. Thus, model-based learning is considered
more goal oriented, in contrast to model-free learning, which is
linked to habit formation (124). The tendency to use model-free
learning increased with BMI (125) and was more pronounced in
individuals with binge-eating disorder (126). Similarly, reduced
goal-directed learning correlated with the degree of obesity
(127,128), suggesting a link between obesity and the use of
model-free strategies. Under model-free learning, it may be
harder to adapt previously advantageous habits, developed to
conserve energy, to changes in the environment (129).

Furthermore, the greater reliance on model-free learning
may serve not only as the cause for obesogenic dietary
choices, but also as the outcome of such choices. Obesity-
related changes in dopamine function likely influence reward
sensitivity and learning and may underlie the greater reliance
on model-free learning (130,131) as well as the reduced
learning from negative prediction errors (89,105). Predicting the
direction of these effects is not straightforward, however,
because dopamine signaling is affected by multiple direct and
indirect mechanisms (132), which may vary nonlinearly with the
degree of obesity (115).

A key concept driving food-related decisions is the extent to
which pleasurable stimuli are rewarding, or the psychobiological
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trait of sensitivity to reward. Increased sensitivity to reward in-
duces differential motivational drive that may promote exces-
sive eating. Indeed, sensitivity to reward predicted emotional
overeating (133), preference for foods high in fat and sugar, and
BMI (134). A behavioral approach to estimate the subjective
value of specific items uses paradigms that quantify food de-
mand. In these paradigms, subjective value is estimated based
on willingness to pay —the maximum price decision makers are
willing to pay to acquire an item (135)—or willingness to work—
the effort that participants are willing to exert to acquire an item,
for example, by repeatedly pressing a button (136). Several
studies demonstrated higher willingness to work for food re-
wards in individuals with obesity compared with control sub-
jects (136-138), but this pattern may reverse when physical
effort is required (139). Interestingly, excessive eating is cost
dependent in some animal models such that obesity develops in
low-effort environments but not in high-effort ones (140,141).
This result suggests that rather than solely affecting the value of
food, dopamine also affects motivation or sensitivity to effort
(142).

In addition to testing the role of decision traits in food-
related choices, animal models allow testing the reverse
causal relationship—the effect of specific dietary regimens on
decision making. In particular, the effects of the Western diet, a
diet high in fat and sugar, were studied in relation to changes in
feeding patterns and decision characteristics. When exposed
to Western diets, rats developed binge-like feeding behavior
(143) and demonstrated impairment in learning and cognitive
functions (144,145). Moreover, rats that were chronically
exposed to such diets experienced alteration in striatal areas
that promote goal-directed behavior, leading to reduced
sensitivity to outcome values (146). These alterations could
relate to increased inflammatory markers in the hippocampus,
a critical region involved in memory (147). These findings
suggest a bidirectional relationship between impaired learning
and obesity, whereby an obesogenic diet is not only the
outcome of impaired learning but also its cause. Together,
these factors point to a potentially vicious cycle by which
impaired learning is caused by obesity and then behaviorally
aggravates it (148).

An additional perspective on food-related learning is the
dysregulated food consumption associated with eating disor-
ders. A few studies with small samples suggest that this dys-
regulation may be associated with alterations in the reinforcing
value of food. For example, women with bulimia (n = 10)
worked more than control subjects (n = 10) for food reward in a
“binge” condition, but this pattern was reversed in a condition
that allowed participants to “drink comfortably” (149). More
research, however, is needed to establish this connection
between food-related learning and eating disorders.

FROM ISOLATED FEATURES TO HOLISTIC DECISION
PROFILES

A mechanistic understanding of obesity is critical for devising
behavioral and pharmacological interventions. Behavioral-
economics and reinforcement-learning paradigms identify in-
dividual preferences that, interacting with the environment, can
contribute to the development and maintenance of obesity.
Neuroeconomic approaches validate these traits by identifying

A Neuroeconomics Approach to Obesity

a neural basis for general traits and individual differences in
behavior. A central concept in neuroeconomics is value: from
an economic perspective, an obesogenic choice could result
from altered subjective valuation. Emerging literature points to
several features of value-based decision making that may be
linked to obesity, including increased preferences for imme-
diate rewards, increased risk tolerance, and altered reward
learning.

A bulk of the literature focuses on intertemporal choice. These
studies suggest that individuals with obesity are, on average,
more present oriented compared with healthy-weight control
subjects. While findings are quite consistent in the food domain,
results are mixed in the monetary domain, with about half of the
studies reporting no correlation between temporal discounting
and obesity. This is one example for the potential role that neural
measures can play in shaping our understanding of the mech-
anisms of obesity. While there is ample evidence for overlapping
representations of value across domains (150), there are also
unique neural substrates for food valuation (6,90). Valuation al-
terations in obesity may thus be unique to the food domain in
some cases, but more general in others.

There is also some evidence for increased risk tolerance in
obesity, although findings here are mixed as well. To our
knowledge, ambiguity—a type of uncertainty with unknown
probabilities that is of particular interest for eating behavior—
has not been studied in obesity using behavioral-economics
tools. Finally, reward learning seems to play a role in obesity.
Obesity is associated with greater reliance on habit-like,
model-free decisions in contrast to goal-oriented, model-
based ones. It is also associated with less efficient use of new
evidence for guiding future decisions in both humans and
animals. Similar to delay discounting, the domain specificity of
the learning effects is not clear, with reports of both food-
specific effects (103,104) and domain-general effects (102).
Longitudinal studies are needed to explore the bidirectional
causal relationship between obesity and learning in humans.

The strength of the neuroeconomics approach is the ability
to tease apart specific computations that underlie the decision
process. Studying the neural basis of obesogenic decision
making allows for the development of biologically sound
behavioral models and thus a better understanding of the
behavior leading to obesity. Obesity, however, is a multidi-
mensional phenomenon of which individual decision making is
just one facet. There are bound to be substantial individual
differences in the path to obesity, with subgroups of individuals
exhibiting decision variations. We propose that the next stage in
applying the neuroeconomics approach to obesity is to
examine the various processes described here within in-
dividuals to construct individual behavioral profiles. Such an
examination is also important because the various decision
characteristics are not independent. For example, individual
attitudes toward uncertainty may be confounded with discount
rates (151) or influence reinforcement learning (152).

These individual profiles are valuable because they may
point to differences in the underlying mechanisms of obesity
and guide individually tailored interventions. For example,
behavioral nudges that make future consequences more
salient are suitable interventions for a domain-general steep
discount rate (153-155), whereas food-specific learning im-
pairments could be treated by easy-to-follow dietary
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guidelines and external reinforcement to successful compli-
ance. Individual differences may also relate to population dif-
ferences. In particular, existing literature already hints at sex
differences in food-as-reward processing. Identifying age- and
sex-dependent decision characteristics could reveal their true
effect magnitudes and prevalence and serve as the basis for
more effective targeting of interventions. Tracking these pro-
files in longitudinal studies is important for revealing the un-
derlying causal structure of the association between different
decision characteristics and weight status; for example,
whether impaired learning is the source or the outcome of di-
etary decisions.

Many of the studies make some implicit assumptions. First,
the prevalent comparison between healthy and unhealthy
weights in the literature is useful, but it implicitly assumes a
linear relationship between weight status and the expected
expression of a studied decision characteristic. However,
different weight statuses, for example, overweight and obese,
may be associated with different characteristics that define
separate decision profiles. The nonlinear relationship between
obesity severity and dopaminergic tone offers neurobiological
evidence that obesity is not necessarily “more of the same”
behavior under overweight status (115). Second, most studies
use BMI as an indication for obesity, but there is still debate on
how accurately BMI defines obesity (156,157). Future studies
should be aware of this heterogeneity and strive to better un-
derstand sources of obesity while being diligent in publishing
null findings, e.g., findings that do not identify discounting ef-
fects in populations with obesity (158).

How could better understanding of obesity sources be used
to help decision makers make better decisions? Some exam-
ples of potential interventions that leverage the understanding
of human decision making to structure environments that
promote healthier food choices include restructuring menus to
make healthier choices more attractive and salient and picking
healthier defaults (159), distancing calorically dense products
from checkout counters to discourage impulse purchases
(160), and matching lower willingness to pay (demand) with a
less expensive supply of healthy foods. The behavioral-
economics and neuroeconomics approaches integrate envi-
ronmental factors and individual dispositions by considering
the potential gains and losses underlying choice. Applying
these approaches to the study of the neural mechanisms un-
derlying obesity-inducing behaviors provides a pivotal
perspective on the understanding of the complex phenomenon
of obesity and the design of effective interventions.
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