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Recent studies have used the random utility framework to examine whether neural
data can assess and predict demand for consumer products, both within and across
individuals. However the effectiveness of this methodology has been limited by the
large degree of measurement error in neural data. The resulting ‘‘error-in-variables"
problem severely biases the estimates of the relationship between neural measurements
and choice behaviour, thus limiting the role such data can play in assessing marginal
contributions to utility. In this article, we propose a method for controlling for this large
degree of measurement error in value regions of the brain. We propose that additional
neural variables from areas of the brain that are unrelated to valuation can serve as
‘‘proxies" for the measurement error in value regions, substantially alleviating the bias
in model estimates. We demonstrate the feasibility of our proposed method on an
existing dataset of fMRI measurements and consumer choices. We find a substantial
reduction in the bias of model estimates compared to existing baseline methods (the
estimated coefficients roughly double), leading to improved inference and out-of-sample
demand prediction. After controlling for measurement error, we also find a considerable
reduction in the variation of model estimates across consumers.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Given a sample of consumer choice data and other observables, establishing and measuring the marginal contribution
to utility of these observables is now standard practice in economic and marketing analysis (McFadden, 2001). These
methods allow a researcher to assess the effect of a product or policy change on consumer demand, predict future demand,
and potentially infer the resulting impact on consumer welfare (McFadden, 2013).

One challenge in discrete choice analysis lies in measuring the demand for goods that are not currently provided in the
market. One possible approach is to estimate counterfactual demand using parametric assumptions based on the marginal
utilities of attributes of existing goods. However, without a full understanding of how attributes contribute to utility, such
assumptions are quite strong for predicting the elasticity of demand for novel products (e.g. wearable computers or flying
taxis). For this reason, responses to hypothetical surveys are typically used instead; the evaluation or design of novel
products typically relies on conjoint analysis, in which stated-preferences are used to assess and aggregate hypothetical
attributes. Similarly, the assessment of environmental goods relies on stated preference methods for contingent valuation.
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Recently, a growing literature has explored using additional neurobiological measurements to augment survey methods
nd improve demand prediction. It is now well-documented that signals in the human brain correlate with representative
tilities measured while humans evaluate and make decisions over a wide range of choice objects (e.g. consumer goods,
oney lotteries, charitable donations, durable goods, and social and political outcomes; Levy and Glimcher, 2012; Bartra
t al., 2013; Clithero and Rangel, 2013).2 These correlations suggest a method for eliciting preferences when standard
evealed preference data are noisy, problematic, or absent: measurements of neural activity can be used to estimate
aluations directly, thus serve as explanatory variables to predict choice behaviour (Smith et al., 2014; Webb et al., 2019).
ecent studies have demonstrated improved prediction results within individual,3 across individuals,4 and even for market

outcomes like the effectiveness of advertising and crowd-funding campaigns (Falk et al., 2012; Venkatraman et al., 2015;
Boksem and Smidts, 2015; Genevsky et al., 2017).

The analysis in nearly all of these studies can be framed in terms of the Random Utility Model (RUM) familiar to discrete
choice analysts. Let Xj denote a typical vector of observables (e.g. brand dummies or product attributes) that enter the
utility function for alternative j. Estimating the marginal utility (or hedonic weight), β, of these observables via,

Uj = Xjβ + ϵj, (1)

with choice probabilities over alternatives given by,

Pj(Xj) = Pr[Uj > Uk, ∀k ̸= j]

= Pr[(Xj − Xk)β > ϵk − ϵj, ∀k ̸= j], (2)

is the key step in predicting demand (McFadden, 2001).
This is also the case for recent neuroeconomic methods, with the distinction that observables also include neural

measurements of the value that subjects place on brands or attributes (McFadden, 2013). The simplest form of these
models specify utility directly in terms of the neural activations for an alternative (denoted Nj):

Uj = Njβ + ϵj. (3)

The parameter vector β now captures the change in latent utility in response to measured neural activity for different
choice alternatives (Knutson et al., 2007; Smith et al., 2014; Genevsky and Knutson, 2015; Genevsky et al., 2017; Webb
et al., 2019). By far the most popular method for making neural measurements is functional Magnetic Resonance Imaging
(fMRI), with previous studies relating fMRI measurements to a change in a product’s price or packaging (Knutson et al.,
2007; Lusk et al., 2016), the branding of a product (McClure et al., 2004), a change in the quantity of a product (Levy and
Glimcher, 2011), the valuation of environmental goods (Khaw et al., 2015), or even the introduction of a novel product
that a consumer has never experienced (Barron et al., 2013).

Despite the wide range of applications, one issue in particular has hampered the usefulness of neuroeconomic methods
in assessing and predicting consumer choice. There is typically a large degree of error inherent in neural measurement
techniques; an initial estimate of its standard deviation is over four times larger than the error in utility ϵj (Webb et al.,
2019). This measurement error can arise from many sources, which we will discuss below, but its implications are stark.
Consider the estimation of the simple model (3), but instead of directly observing neural activity, we only observe a noisy
measurement of it. Denote this noisy signal Bj = Nj + µj, where µj represents the measurement error. Then the utility
specification becomes

Uj = Bjβ + (ϵj − µjβ)

= Bjβ + ϵ̃j. (4)

The error term ϵ̃j from this model is now negatively correlated with the regressor of interest because of the relation
between Bj and µj. This ‘‘error-in-variables’’ problem will not only decrease the precision of estimated marginal effects
(β), but also bias them towards zero (Yatchew and Griliches, 1985). This bias severely limits the ability of neuroeconomic
techniques to assess the impact of variation in observables: it will worsen predictive performance and limit inference
about whether which brain regions respond to a particular manipulation of observables. Indeed, measurement error
will considerably raise the probability that a false null hypothesis might fail to be rejected, increasing Type II errors
on hypotheses about the role of a brain region in decision-making.

In this article, we propose a new method for alleviating the error-in-variables problem in the context of neural data.
This method will allow us to more accurately measure and predict the relationship between neural data and behavioural
outcomes within the RUM. The intuition for our proposed method is as follows. Note that measurement error enters utility
in (4) as an omitted variable. Therefore additional observables might exist which can act as a proxy for measurement error

2 The utilities implied by revealed-preference methods (Hsu et al., 2009; Levy et al., 2011), willingness-to-pay methods (Plassmann et al., 2007),
nd stated-preference methods (Hare et al., 2010) have all been used as explanatory variables to isolate value signals in neural data.
3 Knutson et al. (2007), Lebreton et al. (2009), Tusche et al. (2010), Levy et al. (2011), Smith et al. (2014), Gross et al. (2014), Telpaz et al. (2015)
nd Webb et al. (2019).
4 For example, Smith et al. (2014), Gross et al. (2014) and Telpaz et al. (2015).
Please cite this article as: R. Webb, N. Mehta and I. Levy, Assessing consumer demand with noisy neural measurements. Journal of Econometrics (2020),
https://doi.org/10.1016/j.jeconom.2020.07.028.
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i.e. an observable that is correlated with measurement error, but would otherwise have no impact on utility). If such proxy
ariables can be found, then adding these variables to the utility specification (4) will reduce the bias in estimates of β. We
herefore propose using contemporaneous signals from regions of the brain unrelated to consumer preference as proxies
or the measurement error in the regressors for utility. The rationale for these proxy variables lies in the properties of
easurement error in fMRI data. As we will discuss in Section 2, the measurement error in value regions of the brain

s still correlated with activity in brain regions unrelated to choice behaviour. Therefore a typical fMRI dataset — which
ontains contemporaneous measurements from other brain regions with no known relationship to valuation — might
lso contain information on both the direction and magnitude of the measurement error in value regions on any given
easurement trial. If so, such contemporaneous measurements could be used as a proxy for unobserved measurement
rror to achieve more accurate and precise estimates of the relation between the neural data and choice behaviour.
We demonstrate our method using a previously-reported dataset containing fMRI measurements and binary choices

ver consumer products (Levy et al., 2011). We find a substantial reduction in the bias of model estimates compared
o existing baseline methods (the estimated coefficients roughly double), leading to improved inference and out-of-
ample demand prediction. After controlling for measurement error, we also find a considerable reduction in the
ariation of estimates across consumers. We also demonstrate that two standard methods for dealing with the error-in-
ariables problem, (i) averaging over additional independent measurements of Bj, and (ii) using additional independent
easurements as instrumental variables, are not feasible in this context. This highlights how our proposed correction
iffers from the standard IV approach to the measurement error problem; we propose controlling for µj directly rather

than hunting for an instrument that is correlated with Bj but not µj. Finally, our proposed method does not require any
hanges to existing experimental protocols (such as repeated choices from the same set, or calibration measurements),
nd in principle, is applicable to other measurement techniques such as Electroencephalography (EEG; Telpaz et al., 2015).
Our proposed error-in-variables correction is relevant to the growing econometric literature which relates neural

bservables to choice behaviour within the RUM framework, but which has not yet corrected for the error-in-variables
roblem. In a landmark study, Smith et al. (2014) assess the predictive ability of neural data for choice behaviour
oth within and across consumers. In an effort to guard against over-fitting they use data from all brain regions, but
pply a LASSO estimator to shrink all the estimates of parameters in β. While this approach nullifies the influence of

many extraneous measurements, the resulting estimates are biased by definition. In contrast, the method proposed here
uses regions specified a priori, with additional covariates included to control for measurement error without artificially
hrinking the estimate of β.
So far we have discussed our proposed methodology in the context of Eq. (3), in which the observables in utility

include neural measurements. Our proposed methodology will also apply when the marginal utility of an observable
attribute xj,l ∈ Xj is modelled explicitly (Harris and Keane, 1999).5 For example, Lusk et al. (2016) specified the marginal
utility of an attribute, βl, as a function of measured neural activity such that βl ≡ β0,l +β1,lBj,l. These marginal effects are
then jointly estimated with standard observables via:

Uj = Xj(β0 + Bjβ1) + ϵj

= Xjβ0 + XjBjβ1 + ϵj. (5)

Note that this approach effectively introduces the neural observables as interaction terms with the other regressors in
Xj (e.g. price levels or brand dummies), either directly (Lusk et al., 2016) or in two stages (Venkatraman et al., 2015).6 These
studies find considerable variation in neural signals across consumers which yields improved choice prediction results
beyond the standard model. However, given a large degree of measurement error, these estimates of the interaction term
coefficient are still biased towards zero. The method proposed here can alleviate this bias.7

Webb et al. (2019) have previously assessed the impact of measurement error in neural observables using data from
the Levy et al. (2011) experiment. In this dataset, neural activity is measured for each alternative, then a subject makes
repeated choices over all binary pairs of alternatives. Therefore the same error-ridden neural measurements can be used
to compare repeated choices of the same pair of alternatives, yielding an estimate of the standard deviation of the
measurement error and a partial bias reduction in the estimate of β.8 By contrast, the method proposed here directly
controls for the error-in-variables problem, therefore provides an improved estimate of both β and the measurement
error. Perhaps most importantly, our proposed method does not require any particular properties of the experimental

5 Harris and Keane (1999) use survey responses (Likert scales) on the importance of attributes in healthcare plans to specify marginal effects.
They found that including these scales significantly improved model fit. The relative performance of neural measures, perhaps in conjunction with
simple Likert scales, remains to be explored.
6 To see the relation to (3), consider a study which only varies choice alternatives. Then Xj is an alternative-specific dummy variable and

Uj = αj + Njβ1 + ϵj . We consider the relation between this model and (3) further in Section 5.3.
7 For example, Lusk et al. (2016) did not observe a significant main effect of a change in mPFC activity in response to a change in price, in

ontrast with earlier literature (Knutson et al., 2007; Plassmann et al., 2008; Karmarkar et al., 2015). Since their study did not address the issue of
easurement error, it is possible that the biased estimate of this relation led to a Type II error. The method proposed here can yield a less-biased,
ore precise estimate of this relation.
8 Formally, measurement error can be modelled as a random effect which is constant over repetitions of the same pair but varies over pairs. Webb
t al. (2019) apply this model assuming that measurement error is independent across pairs.
Please cite this article as: R. Webb, N. Mehta and I. Levy, Assessing consumer demand with noisy neural measurements. Journal of Econometrics (2020),
https://doi.org/10.1016/j.jeconom.2020.07.028.
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esign like repeated choice trials. It is thus widely applicable, both to the large number of existing datasets in the literature
nd to future studies.
Section 2 discuss background on the fMRI measurements used in the neuroeconomics literature and the dataset used

n our study. Section 3 presents some initial reduced-form results to motivate our choice of proxy variables. Section 4
resents our modelling framework and the technical properties of the measurement error correction. Section 5 applies
ur proposed method to the Levy et al. (2011) dataset and compares with existing methods. Section 6 concludes.

. Background

.1. fMRI measurements of valuation

In the neuroeconomics literature, fMRI imaging of the Blood Oxygenation Level Dependent (BOLD) signal is the
redominant method for measuring neural activity. This method takes separate measurements in each of about 100,000
7 mm3 cubes (called voxels) tiling the human brain. This relatively high spatial resolution allows researchers to identify
hich regions of the brain (clusters of voxels) exhibit activity that positively correlates with the value of alternatives.
eta-analyses of over 200 studies demonstrate that the BOLD signal from primarily two clusters, located in the medial Pre-
rontal Cortex (mPFC) and the ventral Striatum (vSTR), correlate with the valuation of choice objects (Levy and Glimcher,
012; Bartra et al., 2013; Clithero and Rangel, 2013).
While meta-analyses clarify the properties of the BOLD signal in mPFC and vSTR collected over many measurements,

ubjects, and studies, any single BOLD measurement from these regions is highly variable. One source of this variability
rises simply because of the imperfect correlation between a neuron’s activity and the electromagnetic properties
easured by BOLD. More invasive methods for measuring neural activity (with electrodes implanted in a brain) reveal

hat the BOLD signal is far more variable than the underlying neural activity (Logothetis, 2002).
However the spatial and highly-distributed functional structure of the brain complicates this issue further. Not only

ill the activity within each brain region be measured with error, but contemporaneous errors in the BOLD signal are
ikely to be correlated across regions for both physiological and mechanical reasons. And perhaps more fundamentally, at
he functional-level, different regions may be correlated with value regions due to some other functional role taking place
longside valuation. For example, visual cortex might respond to visual properties of the same stimuli evaluated by value
egions. And value regions, such as the mPFC, can be engaged in many functions, such as social cognition and learning to
nhibit maladaptive responses (Delgado et al., 2016). These relationships between regions can induce contemporaneous
orrelations that are not related to valuation, and can appear stable across trials, tasks, and individuals (Gratton et al.,
018).
This correlation across regions also presents on opportunity. In an evaluation of consumer behaviour, the aim is to

nderstand how the measured BOLD signal changes as the subject evaluates different products or attributes. Clearly,
easurement error makes this task more difficult. But, in principle, measurements from brain regions that are known to
e uncorrelated with value (say, via large meta-studies) might provide information about the direction and magnitude
f measurement error in mPFC and vSTR. Therefore any correlation between these regions and the mPFC or vSTR on a
iven measurement trial can be used as a proxy to control for the measurement error within mPFC or vSTR on that same
rial. Even the measurement from a single voxel could be used in this role, provided it was uncorrelated with valuation
nd correlated enough with the measurement error in the contemporaneous signals from mPFC or vSTR. In this study,
e consider measurements from voxels in two clusters which previous research suggests are unrelated to valuation.

ccipotal cortex. The first cluster is in the occipital cortex (OCC), in the vicinity of primary visual cortex. This is the
ame control region examined in Levy et al. (2011), who verified that activity in this region was not correlated with the
ank ordering of choices. This region was limited to voxels in the OCC that showed significant activation in the initial
ocalization experiment and was defined individually for each subject (see Levy et al., 2011, for details).

osterior insula. The second cluster is in the posterior-middle portion of the left insula (which we refer to as pInsula).
he same anatomical location was used for all subjects (5 × 5 × 5 mm cube, centred around Talairach coordinates -41,
16, 7), and was verified to be uncorrelated with the rank order of choices within individuals.9

In addition to the previous literature suggesting that both OCC and the pInsula are not related to valuation, these
egions were selected based on reduced-form evidence that they will serve as useful corrections for measurement error
detailed in Section 3). These were the only grey matter regions we considered in our preliminary analysis. Neither of the
egions were selected based on their performance in the model in Section 4, and they were the only regions examined
ith that model. For this reason, we will refer to them as control regions.

9 The region we study here is anatomically separate from the portion of the anterior insula that, depending on the study, has been reported to
orrelate either positively or negatively with valuation (Bartra et al., 2013). For this reason, we conservatively chose voxels in the posterior portion
f the insula (2–3 mm from the posterior tip).
Please cite this article as: R. Webb, N. Mehta and I. Levy, Assessing consumer demand with noisy neural measurements. Journal of Econometrics (2020),
https://doi.org/10.1016/j.jeconom.2020.07.028.
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.2. Data

The dataset we consider was collected in an experiment published by Levy et al. (2011). The purpose of the experiment
as to assess whether neural activity measured during the passive viewing of choice objects could be used to predict
ubsequent choice behaviour. The experiment was thus divided into three stages, with the first two stages implemented
nside an MRI scanner. In the first stage, each subject passively viewed the outcome of a series of small lotteries over
hanges to their wealth. The purpose of this stage was to identify the clusters of voxels which correlated with value. In
he second stage, subjects passively viewed 20 consumer items while intermittently performing an incentivized task so
s to maintain subject engagement. The purpose of this stage was to make repeated measurements for each item from
he value areas identified in the first stage. Immediately after the second stage, subjects performed a third stage outside
f the scanner in which they made all possible binary choices over this set of items in an incentive-compatible manner.
pon completion, each subject also received a $25 show-up fee in cash. We now describe the stages in detail.

.2.1. Localization of subjective value in mPFC and vSTR
The first stage of the experiment was designed to independently identify the voxels which encode the subject’s

aluation of choice objects. Each subject was endowed with $40. On ensuing trials a lottery with equal probability of
aining or losing $2 was presented visually to the subject. The outcome of the lottery was then revealed to the subject
nd the result was added to or deducted from the subject’s wealth. In total, 128 trials of this kind were presented. Within
ach subject, only the voxels which exhibited a statistically significant response to the outcome (winning or losing) were
dentified as our region of interest. Perhaps not surprisingly, voxels within both the mPFC and the vSTR were identified
sing this method, and constituted the regions of interest for the following stage. Levy et al. (2011) provide details of the
egions of interest (ROIs), as well as example images.

.2.2. Measuring the valuations of consumer items
Immediately following the first stage, subjects completed a second stage in the scanner intended to measure the

ubjective values of 20 consumer items. Subjects completed six 7-minute brain scans over the course of 45 min, each
onsisting of 40 trials, for a total of 240 trials. In each of these trials, subjects passively viewed an image of one of 20
ifferent items, including four DVD movies, two books, four art posters, three music CDs, two pieces of stationery, and
ive monetary lotteries represented by pie charts. Each lottery offered a 50% chance of receiving a designated amount of
oney ($10, $15, $20, $25, $30) and a 50% chance of receiving $0. All items were presented 12 times in a random order

o each subject. Subjects were instructed that ‘‘when they saw an item they should think about how much it was worth
o them in a dollar amount’’.

To keep subjects alert, on 20 randomly selected trials (one for each of the 20 items), subjects were asked whether they
referred the item they had just seen or a randomly selected amount of money (ranging from $1 to $10). Subjects were
old that one of these question trials would be randomly realized at the end and they would receive their selection on
hat trial (the item or the money). All subjects responded to these trials, and these 20 question trials were excluded from
ll behavioural and neural analysis. During the scanning stage, subjects did not know they would subsequently be offered
n opportunity to choose between these same items after the scanning process was complete.
The measurement data is therefore a panel consisting of a sequence of neural measurements from C = 11 consumers.10

he neural measurements consist ofM = 11 BOLD measurements for each of J = 20 consumer items, randomly sequenced
for a total of 220 measurements, per subject. We report measurements from R = 4 different regions (clusters of voxels),
the mPFC, vSTR, the OCC as originally defined in the Levy et al. (2011) study, and the pInsula as defined in Section 2.1.11

2.2.3. Choice task
After a 5 min delay following the second scanning stage, subjects were asked to perform a choice task outside of the

scanner. Subjects were presented with a complete series of binary choices between the 20 items previously presented
in the scanner. Each possible binary comparison (190 choices) was presented twice (switching the left–right location on
each repetition), in random order, for a total of 380 choices. The result of one of these choices was randomly selected for
realization.

The choices of subjects were largely consistent, with 96± 2% of triplets transitive. Subjects switched their selection in
± 1% of choice repetitions. Though there was a degree of homogeneity typical in an undergraduate subject pool (Fig. 1),
hoices were idiosyncratic across subjects. The individual preferences of a given subject could not be predicted simply
y examining the preferences of other subjects (the mean correlation of the choice-ranking between pairs of subjects,
xcluding lotteries was 0.1 ± 0.3).

10 Neural data from all regions was only available for 11 of the 12 participants originally reported in the dataset. As reported earlier, meta-analyses
which aggregate over subjects have been conducted (Levy and Glimcher, 2012; Bartra et al., 2013; Clithero and Rangel, 2013).
11 The BOLD signal was averaged across voxels within each cluster and over a time window of 4–6 TRs (a TR is the repetition time of a pulse
cycle in the measurement technology, set to 1 TR = 2 s). This method for extracting the BOLD measurement from the pInsula are identical to those
sed for the mPFC, vSTR, and OCC in the original study. Readers are referred to Levy et al. (2011) for more technical details.
Please cite this article as: R. Webb, N. Mehta and I. Levy, Assessing consumer demand with noisy neural measurements. Journal of Econometrics (2020),
https://doi.org/10.1016/j.jeconom.2020.07.028.



6 R. Webb, N. Mehta and I. Levy / Journal of Econometrics xxx (xxxx) xxx

r
a

t

a

Fig. 1. Distribution of choices in the population.

Table 1
Estimates of logit model of choice on the difference in neural measurement between
alternatives (standard errors in parentheses).

Value Regions Control Regions

mPFC β1 0.194
(0.073)

vSTR β2 0.942
(0.125)

OCC β3 0.084
(0.063)

pInsula β4 −0.107
(0.084)

LL (n = 4180) −2840 −2896
BIC 5696 5809

3. Reduced form evidence

Our approach to alleviating the error-in-variables problem requires using contemporaneous signals from control
egions as proxies for the measurement error in value regions. We now outline two conditions required for this approach
nd provide reduced form evidence in support of them.12 Following that, we discuss a third condition, which although not

directly related to the proxy variable approach, clarifies why a simple method to reduce the measurement error problem
will not work in this context.

Condition 1. The neural activity levels in control regions are unrelated to the value of the alternatives under consideration
(i.e. they are not correlated with subsequent choices of those alternatives).

This condition is otherwise known as the redundancy condition (Wooldridge, 2002), which states that if measurement
error could be observed, or if there was no such measurement error in the first place, then the proxy variables must
not explain any variation in utility. This condition thus requires that the neural activity in control regions of the brain
is independent of valuation. To verify this condition in our dataset, we estimated a logit regression of consumer choice
based on Eq. (3). The observable regressors were either the average BOLD signals associated with alternative j from the
two value regions of the brain, mPFC and vSTR, or the two control regions of the brain, OCC and pInsula.13 Table 1
reports the estimation results of these two models. As would be expected from earlier work (e.g. Knutson et al., 2007),
the estimates for both the mPFC and vSTR in the first model are positive and highly significant, implying that both signals
impact utility (χ2

= 115, p < 0.000). However, in the second model, the coefficients on OCC and pInsula measurements
are not significant (χ2

= 2.71, p < 0.258). This suggests that both OCC and pInsula do not significantly influence utility,
hus satisfy Condition 1.

The next condition is equally critical for the control regions to serve as proxies for the measurement error in mPFC
nd vSTR.

12 Ultimately, assumptions underlying valid instruments and/or proxy variables are not fully testable, therefore always rely to some extent on a
priori judgement. Though previous meta-analyses demonstrate the control regions have no correlation with valuation, our results are therefore still
only dispositive.
13 The randomized ordering of the binary choices in the experiment makes an intercept term redundant.
Please cite this article as: R. Webb, N. Mehta and I. Levy, Assessing consumer demand with noisy neural measurements. Journal of Econometrics (2020),
https://doi.org/10.1016/j.jeconom.2020.07.028.
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Table 2
Correlation matrix for measurements from 4 brain regions.

mPFC vSTR OCC

mPFC –
vSTR 0.512 –
OCC 0.374 0.398 –
pInsula 0.304 0.306 0.213

Condition 2. Contemporaneous measurement errors are significantly correlated across both valuation and control regions of
the brain.

Evidence for this condition can be found in the correlation matrix between contemporaneous measurements in the
four regions we study (Table 2). Not surprisingly, activity in the mPFC and vSTR is highly correlated, likely due to their
previously established role in the valuation of choice alternatives. However we also find that BOLD measurements in
OCC and pInsula are significantly correlated both with each other and with the mPFC and vSTR. This suggests support
for Condition 2. Given that activity in OCC and pInsula is not correlated with valuation (Table 1), it follows that the
correlations between OCC, pInsula, and valuation regions must be due to some other factor, which for the purposes of
this study, manifests as measurement error.

Finally, we consider whether a simple alternative approach can be used to reduce the measurement error problem.
Recall that the neural measurements consist of M = 11 signals for each alternative and subject. The sample mean of the
M = 11 measurements for a given alternative could then be used as a regressor in the choice model. If measurement error
were substantially reduced by doing so, then there would be no need for our proposed method. The following condition
rules out this approach.

Condition 3. The measurement error is substantial even if we average the BOLD signal across the M measurement trials.

To verify this condition, we examined the response in the signal in the two value regions of the brain (mPFC, vSTR) to
the presentation of each alternative. In particular, we assessed how much variation in the BOLD signal in each of two value
regions of a given subject could be explained by the presentation of the different alternatives to that subject during the
measurement stage. The unexplained residual variation in the BOLD signal provides us with an estimate of the variance in
the BOLD measurement due to measurement error (details of this analysis are given in the Appendix). We estimate that
just over half of the overall variance in the sample mean (mPFC: 0.527; vSTR: 0.536) can be attributed to measurement
error.

4. Model

4.1. Neural random utility model

We now describe a neural random utility model of consumer choice. This model is a reduced-form representation
of the predominant computational decision models in the neuroscience literature (Fehr and Rangel, 2011; Webb, 2019).
Each consumer c ∈ {1 . . . C} is given a total of T pairwise choices amongst j ∈ {1 . . . J} alternatives. We only specify
the consumer index c when it is critical, so all variables should be taken to be consumer specific. For example, when
presented with alternative j at choice occasion t , let Ujt be a consumer’s utility for j. Similarly, let nr,jt be the activity
level of value-encoding neurons in region r of the consumer’s brain. The consumer’s utility for an alternative is a linear
combination of the contemporaneous neural activity levels in mPFC and vSTR (r = 1 and 2, respectively), governed by
parameters β1 and β2.14

Ujt = β1n1,jt + β2n2,jt .

There are two issues inherent in bringing this model to a prediction dataset. First, Ujt is defined as a function of the
contemporaneous neural activity levels, that is, during trial t of the choice task. However in our dataset, we observe
neural measures for each alternative during the preceding measurement stage. It follows that the neural activity levels
during a choice trial may vary from those measured during the measurement stage, simply due to the stochastic nature
of neural activity. Second, we do not perfectly measure the activity of value-encoding neurons during the measurement
stage. Instead, we measure the noisy BOLD signal from a pre-defined region of the brain that includes additional sources of

14 This formulation is quite general. We only require that an aggregate statistic can represent the activity level of all value-encoding neurons in
these regions. For example, n1,jt could be a (weighted) linear combination of the activity levels in each voxel in mPFC which encodes value. Similarly,
t could be a linear combination of the spike rates of neurons within each of those voxels. Note that this formulation does not place any restriction
n the sign or magnitude of the weights in this aggregation. We also do not require that only mPFC and vSTR contribute to utility. Value-related
ctivity from other regions would either enter utility directly (if observed) or as an error term (if not), which would carry through in our calculations
elow. Of course, Condition 1 would still need to be assessed for any potential control region.
Please cite this article as: R. Webb, N. Mehta and I. Levy, Assessing consumer demand with noisy neural measurements. Journal of Econometrics (2020),
https://doi.org/10.1016/j.jeconom.2020.07.028.
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ariation. Together, these issues imply that we must transform utility in terms of the measured BOLD signal for alternative
during the measurement stage.15
We make this transformation in two steps. First, we separate the deterministic and stochastic component of neural

ctivity,

nr,jt = Nr,j + νr,jt ,

here Nr,j ≡ Et [nr,jt ] is the expected neural activity for alternative j in a brain region (where the expectation is over trials
ithin consumer and alternative) and νr,jt is the deviation from this expectation. Therefore the utility of alternative j at
hoice occasion t can be written in terms of the expected neural activity,

Ujt = β1N1,j + β2N2,j + ϵjt , (6)

here the error term ϵjt ≡ β1ν1,jt + β2ν2,jt represents the unobserved fluctuations in value associated with alternative j.
e assume it to be IID across all consumers, all alternatives and all choice occasions.
Next, we replace the neural activity levels Nr,j with the noisy BOLD signals from the measurement stage. Let Br,jm be

he observed BOLD signal associated with alternative j in region r during measurement trial m ∈ M . We represent it as a
inear function of the neural activity level on the measurement trial,

Br,jm = γ (nr,jm + µr,jm),

here µr,jm is error in the measurement of value and γ is the unit scaling between BOLD and neural activity.16 Note
hat, under this formulation, the term µr,jm captures both error in the measurement of the BOLD signal (e.g. for technical
r physiological reasons) as well as error arising for functional reasons (e.g. neural activity in the pre-defined region of
PFC voxels due to some other function, perhaps in concert with other brain regions).17 Substituting the expected value
f the neural activity levels, Nr,j, yields

Br,jm = γ (Nr,j + νr,jm + µr,jm). (7)

The RHS of Eq. (7) consists of two terms, νr,jm and µr,jm, which make up the error on a measurement trial. The former
epresents the deviation from expectation in the neural activity encoding value, and the latter represents the deviation in
he BOLD signal from this neural activity. Therefore both of these errors vary over different consumers, alternatives, and
easurement trials, but critically, the µr,jm may also be correlated with different regions of the brain on a measurement

rial. Averaging Eq. (7) over the M measurement trials, we get the following expression for the expected neural activity
evel as a function of the sample means over measurements,

Nr,j =
1
γ
B̄r,j − ν̄r,j − µ̄r,j.

ubstituting this expression for Nr,j into Eq. (6) yields

Ujt = α1B̄1,j + α2B̄2,j + ξj + ϵjt , (8)

where

ξj ≡ −(β1ν̄1,j + β2ν̄2,j + β1µ̄1,j + β2µ̄2,j). (9)

Eq. (8) specifies utility in terms of the average BOLD signals from mPFC and vSTR, measured for alternative j. The
arameters of interest, α1 ≡

β1
γ

and α2 ≡
β2
γ
, capture the marginal contribution of neural activity in mPFC and vSTR to

onsumer’s utility (β1 and β2), scaled by the unit transformation of the BOLD signal γ . Since both the contribution to
utility from each region and the scale of BOLD might differ over consumers, we will allow for unobserved heterogeneity
in α1 and α2 over consumers.

The term ξj is the overall measurement error (referred to simply as the measurement error henceforth). It is composed
f two terms from each of the value regions; the first (ν̄r ) arises because value measurements were not made concurrently
ith choice trials, and the second (µ̄r ) is the sample mean of measurement error in the signal.18 The measurement error

j is therefore IID over consumers and alternatives. However, unlike the ϵjt , it is invariant over repeated choice occasions
or a given consumer and alternative, and may be correlated with measurements from other brain regions.

The impact of ξj on the parameter estimates is twofold. Not only will estimates of α1 and α2 be imprecise, but more
mportantly, they will be biased towards zero because the regressors B̄1,j and B̄2,j are negatively correlated with the
easurement error ξj via Eqs. (7) and (9). We now discuss two different approaches for alleviating this problem.

15 In the neuroscience literature, it is common to implement experimental designs in which choices are made concurrently with neural
easurements. In such cases, we would only be concerned with the second issue (see footnote 18 for more detail).

16 We can safely ignore an intercept term in this specification. Since it will be common across the measurements of all alternatives, ultimately,
t will not impact the differences in measurements between alternatives.
17 In addition, error in the pre-definition of the voxels comprising the mPFC region of interest will be captured by µ1,jm , as well as error in the
re-specified weighting (or sign) of those voxels.
18 When measurements are made concurrently with choices, the measured activity on the current trial, Br,jt , enters utility directly (rather than
n average activity over measurement trials). Then νr,jt should no longer be considered measurement error. However, the remaining source, µr,jt ,
ay still be correlated over regions and our proposed correction for the error-in-variables problem would still be feasible.
Please cite this article as: R. Webb, N. Mehta and I. Levy, Assessing consumer demand with noisy neural measurements. Journal of Econometrics (2020),
https://doi.org/10.1016/j.jeconom.2020.07.028.



R. Webb, N. Mehta and I. Levy / Journal of Econometrics xxx (xxxx) xxx 9

4

4

r
c
m
c
c
a
a
w

c
u
a
r
m
j
M
c
s
i
p

t
f

w
t
e
e
a

t
o
f
e

4

t
I
a
e
e
a

t
e

.2. Alleviating the error-in-variables problem

.2.1. Instruments for measurement error
We first consider whether additional measurements of the BOLD signal can be used as instruments for the endogenous

egressors. In a standard IV approach to the errors-in-variables problem, the goal is to find an observable that is
orrelated with the regressors B1,j and B2,j in utility, but uncorrelated with the measurement error. Typically, additional
easurements of the same latent variables are used as instruments. In the context of a neuroeconomic dataset, we
an therefore consider whether additional measurements of the BOLD signal associated with the same alternative and
onsumer from the same regions (mPFC and vSTR) can be used as instruments. To serve as valid instruments, these
dditional measurements must be (i) exogenous, that is, they should be independent of the measurement errors in utility,
nd (ii) relevant, that is, they should be significantly correlated with the regressors, B1,j and B2,j, in utility. Instruments
hich fail to satisfy these conditions can lead to sizeable finite sample bias in the estimates.
Recall that, in the measurement stage, there are M = 11 different measurements of the BOLD signal per alternative and

onsumer, with the alternative sequenced randomly over trials. Thus an IV approach can be implemented by specifying
tility with the average of the first K < M measurements associated with alternative j from mPFC and vSTR (instead of
veraging over all M signals as in Eq. (8)) and taking the averages of the remaining M − K measurements from that
egion and other value regions as instruments. These instruments satisfy the condition of exogeneity because in the
easurement stage, there was a lengthy (and random) time gap between any two BOLD measurements of alternative

, implying that measurement errors in the first K signals will be independent of measurement errors in the following
− K signals.19 They might also be relevant because a measurement from one valuation region (e.g. mPFC) should

orrelate with a measurement from that same region on a different measurement trial — both are measurements of the
ame underlying valuation for an alternative, therefore they should be correlated. The same logic holds for a correlation
n activity between valuation regions (e.g. mPFC and vSTR), even if these measurements are taken on different trials. This
rovides two potential instruments for two endogenous regressors.
A standard test for relevance is whether the F-statistic from a first-stage regression of the endogenous variables on

he potential instruments is greater than a critical value of 10 (Staiger and Stock, 1997).20 We therefore run the following
irst-stage regressions

B̄K
1,j = κ1 + θ11B̄M−K

1,j + θ12B̄M−K
2,j + ν1,j,

B̄K
2,j = κ2 + θ21B̄M−K

1,j + θ22B̄M−K
2,j + ν2,j,

where the sample means B̄K
1,j and B̄K

2,j are the regressors in utility, and B̄M−K
1,j and B̄M−K

2,j are the two instruments. While
e do observe significant correlation between the split measurement samples, unfortunately, for all positive values of K ,
he largest value of the F-stat from either of these regressions was 6.503. This ‘‘weakness’’ in the instruments is to be
xpected if the measurement error is large enough such that splitting the measurement sample does not yield a strong
nough correlation between the two halves. The poor fit implies that the instruments are too weak and a standard IV
pproach cannot be used to control for measurement error in this dataset.
Moreover, weak instruments will likely be an issue for any fMRI dataset. Even after averaging over K and M-K signals,

he measurement error in the sample mean is high. While this problem can potentially be alleviated with a large number
f independent measurements per alternative per consumer, the limited number of possible measurement trials in typical
MRI experimental designs (due to cost) makes this infeasible. Therefore the IV approach for dealing with the measurement
rror problem seems infeasible for neural datasets given current technology.

.2.2. Proxies for measurement error
We now propose an alternative approach for alleviating the measurement error problem in fMRI data. Note that

he measurement error ξj in Eq. (8) is simply an omitted variable that is correlated with the regressors B̄1,j and B̄2,j.
f we can find an observable that captures this correlation, then including that variable in the utility specification can
lleviate the error-in-variables problem, provided it also satisfies the redundancy condition noted in Section 3. The
ffectiveness of a proxy variable thus depends on the extent to which it is able to capture the variation in the measurement
rror (Wooldridge, 2002). The larger the correlation between the proxy and measurement error, the greater will be the
lleviation of the error-in-variables problem.
The proxy variables we consider are the sample means of the M BOLD measurements from two control regions of

he brain (the OCC and the pInsula), where each measurement was taken contemporaneously when the consumer was
xposed to alternative j. We index these control regions by r = {3, 4} and denote the proxies by B̄r,j ≡

1
M

∑M
m=1 Br,jm. As

described in Section 2, these proxies appear to satisfy the criterion of redundancy. First, the control regions were chosen

19 Section 2 discusses correlations in the measurement error between contemporaneous signals from different brain areas. However, the exogeneity
condition requires independence in the measurement error across different measurement trials, which we would expect to be zero.
20 On average, the size of the finite sample bias of an IV estimator relative to that of the OLS estimator is approximately equal to 1/F - the inverse
F statistic of the first-stage IV regression in which the endogenous variable(s) are regressed on the instruments. Therefore the larger the value of
the F statistic, the smaller will be the finite sample bias of estimates of α and α .
Please cite this article as: R. Webb, N. Mehta and I. Levy, Assessing consumer demand with noisy neural measurements. Journal of Econometrics (2020),
https://doi.org/10.1016/j.jeconom.2020.07.028.
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priori based on a large body of evidence that they do not play a role in valuation. Second, neither of the BOLD measures
rom the control regions were significantly correlated with choice behaviour (Table 1). What remains to test is whether,
nd to what extent, these control variables are correlated with the measurement error in the BOLD signal across regions
f the brain, thus can serve as useful proxy variables.
To see how these proxy variables enter our utility specification, first define the measurement error as a linear function

f the two proxy variables,

ξj = α3B̄3,j + α4B̄4,j + ςj,

here ςj is the residual measurement error (IID over consumers and alternatives), and the parameters α3 and α3 determine
he extent to which the proxy variables capture the variation in the measurement error ξj.21 Substituting this expression
nto Eq. (8) yields,

Ujt = α1B̄1,j + α2B̄2,j + α3B̄3,j + α4B̄4,j + ςj + ϵjt , (10)

here α1 =
β1
γ

and α2 =
β2
γ

are still the parameters of interest.

The inclusion of proxy variables can only reduce the asymptotic bias in the estimates of α1 and α2 compared to the
aseline model (8), not eliminate it (Wickens, 1972; McCallum, 1972). This reduction depends on the extent to which
he proxy variables capture the variation in the measurement error. If the proxies are positively correlated with the
easurement error, then we should expect the estimates of α3 and α4 to both be less than zero. To see why, consider the
ase when a measurement error for an alternative is large and positive. Then the BOLD signal in control regions will be
arge (due to measurement error), but so will the measurements in value regions. In fact, these value measurements will
e too large, therefore their contribution to utility should be attenuated on this trial. Therefore if the proxy variables are
orking as intended, we should expect an increase in the estimates of α1 and α2 and negative estimates for α3 and α4.22
It also remains to verify whether the inclusion of the proxy variables will result in more or less precise estimates

f α1 and α2 and a smaller estimate for the variance of the measurement error, ξj. In principle, the standard errors of
he estimates and the estimated variance of the measurement error could either increase or decrease after including
roxy variables (Aigner, 1974). The intuition is as follows. We can think of proxy variable(s) as having two components:
i) the common measurement error, which is the measurement error that is common between the regressor and the
roxy variable, and (ii) variation in the proxy variable that is uncorrelated with both the measurement error and the
egressor. When we add the proxy variable to the utility, a portion of the previously unobserved measurement error is
ow explained by component (i) of the proxy variable. This results in a reduction of the variance of measurement error
n the utility. However, adding the proxy variable can also increase the variance because of the addition of component
ii).23 Thus there are two opposing forces at work and the net change in the variance of measurement error will depend
n their relative magnitudes.

.3. Estimation details

To illustrate the ability of proxy variables to address the error-in-variables problem, we estimate five nested models.
ll proposed models are estimated using simulated maximum likelihood. Technical details of the estimation procedure
re in Appendix B.

odel 1: Logit. The first is a simple Logit model, based on the utility in Eq. (8), which ignores measurement error. The
emporal fluctuation in value, ϵjt , is assumed to be IID Extreme Value over choice occasions, consumers, and alternatives,
ith variance normalized to one.24 This model consists of 2 parameters: (i) α1 and α2, the relationship between signals

n the mPFC and vSTR and utility. Results for this model were already reported in Table 1.

odel 2: Baseline random-effect. The second model uses a random-effect to model the alternative-specific measurement
rror, ξj ∼ N (0, σ 2

ME). The scale of the measurement error σME is identified because ξj is IID over consumers and
lternatives, but is invariant over all choice occasions for a given consumer and alternative. This model consists of three
arameters, α1, α2, and σME the scale of the measurement error

odel 3: Proxy variable correction. The third model is our proposed approach to alleviate the measurement error problem
ia a proxy variable, based on the utility given in Eq. (10). This specification adds the coefficients of the two proxy variables
α3 and α4) to Model 2, for a total of five parameters.

21 We have removed the intercept term since it is common across the utilities of all alternatives.
22 More formally, recall from Eq. (9) that the sources of measurement error ξj enter with a negative sign. Next recall from Table 2 that the signals
¯3 , B̄4 are positively correlated with the signals B̄1 , B̄2 . Now since the coefficient of the measurement error in the utility is positive (unity), it implies
hat α3 and α4 will be negative.
23 Note that component (ii) is uncorrelated with the regressors, thus it does not bias coefficient estimates.
24
Please cite this article as: R. Webb, N. Mehta and I. Levy, Assessing consumer demand with noisy neural measurements. Journal of Econometrics (2020),
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Table 3
Parameter estimates and model comparison of Logit, Random-effect, and Proxy variable correction.

1: Logit 2: Baseline random-effect 3: Proxy variable correction

Estimate (S.E.) Estimate (S.E.) Estimate (S.E.)

mPFC α1 0.1935 (0.0731) 0.2796 (0.1025) 0.4046 (0.1049)
vSTR α2 0.9424 (0.1258) 1.9148 (0.1834) 2.3901 (0.1985)
OCC α3 −0.1350 (0.0672)
pInsula α4 −1.8701 (0.1313)
Meas. Err. σME 1.4516 (0.0536) 1.4566 (0.0486)

LL (N = 4180) −2840.1 −1951.1 −1880.8
BIC (N = 4180) 5696.9 3927.2 3803.2

Models 4-5: Heterogeneity in utility coefficients. The fourth and fifth models augment the specification by allowing for
unobserved heterogeneity across consumers in the specification of utility. Specifically, the parameters α1 and α2 in (8) are
assumed to be independently normally distributed across consumers with means α̃1, α̃2 and variances σ 2

1 , σ 2
2 . Therefore

the relationship between the neural measurement and utility can vary across subjects when σ 2
1 or σ 2

2 are non-zero. The
fourth model consists of five parameters: (i) α̃1 and α̃2, the population level means of the relationship between signals in
the mPFC and vSTR on consumer preference, (ii) σ1 and σ2, the standard deviations of this relationship across consumers;
and (iii) σME , the scale of the measurement error. The fifth adds two additional proxy variables, α3 and α4, for a total of
seven parameters.

5. Empirical results

In Section 5.1, we begin with results from the simpler specifications without consumer heterogeneity, as they clearly
demonstrate the ability of the proxy variables to account for measurement error. In Section 5.2, we present the results
from incorporating consumer heterogeneity. All of these results are presented for the full sample to reduce the variance
of our estimates. In Section 5.3 we consider a specification with alternative-specific indicators, and in Section 5.4, we
consider an out-of-sample validation exercise.

5.1. Model estimates without heterogeneity in utility coefficients

Results for the model without heterogeneity are presented in Table 3. In the Random-Effect specification, the estimates
of both α1 (mPFC) and α2 (vSTR) are positive, significant, and larger than in the simple Logit model. This result is consistent
with previous studies finding that an increase in mPFC and vSTR activity increases the probability of choosing an item (e.g.
Knutson et al., 2007; Webb et al., 2019). However when the proxy variables for measurement error are included together
with mPFC and vSTR, the estimates of both α1 and α2 increase substantially. This suggests that the Logit estimates are
significantly biased when measurement error is not controlled for.

Moreover, both α3 and α4 enter significantly negative, as expected. Recall that the coefficients for the control regions, by
themselves, were not significant choice predictors (Table 1). Since they are positively correlated with the measurement
error — therefore with the signals from mPFC and vSTR — they serve to attenuate the measurement of utility when
included in the utility specification. We also observe an improvement in fit from the proxy variable correction and a drop
in the BIC.

The standard deviation of the measurement error remains consistent at 1.45 times than that of ϵ. The standard errors
of all estimates remain consistent across specifications. As discussed in Section 4.2.2, including proxy variables leads to
two countervailing forces that increase and decrease the variance of the measurement error in the utility. In this dataset,
these two forces appear to balance.

5.2. Model estimates with heterogeneity in utility coefficients

Including proxy variables to correct for measurement error has similar effects when we allow for heterogeneity in
the BOLD response across consumers (Table 4). In particular, the means of the random coefficients both increase after
controlling for measurement error and are consistent with the estimates of α1 and α2 in Table 3. Again, this suggests a
substantial reduction in bias. Our estimate of the standard deviation of the measurement error is 1.31 (Model 4) and 1.59
(Model 5) times that of the fluctuations in valuation ϵjt .

The results from the heterogeneous model also highlight an interesting implication of measurement error: controlling
for measurement error yields a substantial decrease in the variance of the random coefficients. This suggests that a
significant degree of the heterogeneous BOLD responses typically observed across subjects in such studies may be due to
the degree of measurement error within consumer. In particular, once measurement error is controlled for, the variance
of the vSTR coefficient (σ2) is not significantly different than zero. To interpret this result, it is instructive to consider the
sources of heterogeneity in α and α .
Please cite this article as: R. Webb, N. Mehta and I. Levy, Assessing consumer demand with noisy neural measurements. Journal of Econometrics (2020),
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able 4
odel estimates allowing for heterogeneity across consumers in BOLD response.

4: Baseline random-effect 5: Proxy variable correction

Estimate (S.E.) Estimate (S.E.)

mPFC α̃1 0.0149 (0.1017) 0.8928 (0.1015)
vSTR α̃2 1.3421 (0.1995) 3.6333 (0.1998)
OCC α3 −1.0393 (0.0948)
pInsula α4 −0.9824 (0.1518)
Meas. Err. σME 1.3091 (0.0454) 1.5849 (0.0509)
Std. Dev. of mPFC σ1 0.7707 (0.1180) 0.2965 (0.1056)
Std. Dev. of vSTR σ2 0.2321 (0.1659) 0.0111 (0.1751)

LL (N = 4180) −1948.3 −1874.8
BIC (N = 4180) 3938.3 3759.6

First, heterogeneity might arise because the scale (γ ) between neural activity and the BOLD measure might differ
over consumers. This is a common interpretation of the random effect in fMRI modelling. Second, the contribution
to utility from the mPFC and/or vSTR (β1, β2) might differ over consumers. However if σ2 is indeed small once the
measurement error on each trial is controlled for, then that suggests that neither source of heterogeneity are present
across measurements from the vSTR in this sample. This finding might explain why signals from the vSTR have been so
effective in predicting consumer choices across consumers and field settings (Venkatraman et al., 2015; Genevsky et al.,
2017): the relationships between neural activity, the BOLD signal, and the choice probabilities appear to be stable across
consumers.

By contrast, there is still variation in the coefficient for the mPFC (σ1) even after controlling for measurement error.
Given that our estimate of σ2 suggests that there is little variation in γ across consumer in this sample, we can attribute the
remaining variation in the relationship between mPFC and choice as arising in the contribution to utility β2. Again, this is
consistent with the hypothesis that the role of mPFC in valuation might be more idiosyncratic across consumers (Knutson
and Genevsky, 2018).

5.3. Alternative-specific indicators

In typical consumer choice studies, alternative-specific indicators are often included so that the baseline choice
probability for an alternative is isolated. Therefore in our study, the coefficients on alternative-specific dummies represent
the average valuation (over consumers) for each of the 20 items. When they are included in the model, the coefficients
on the valuation signals are identified purely from the deviations of the individual consumers signals from the mean
individual.

In our results presented so far, we have examined models without intercepts for two reasons. First, an objective of the
neuro-prediction literature is to assess the degree to which latent neural signals in the value regions can capture utility
without pre-specifying the identity of the alternative (e.g. Smith et al., 2014). Second, the estimates of a model with
alternative-specific dummies cannot be used to predict the market shares/choices of products that were not included
in the estimation sample. Such would be the case when evaluating new products, or in the case of our application in
Section 5.4, when predicting across product categories. If the purpose of a prediction exercise is to get an estimate of
the baseline choice probability for an alternative, a model with alternative-specific indicator assumes it can be estimated
directly from choice data.

However it is still useful to consider a model with alternative-specific indicators. First, we can assess whether the
signals from value regions contain information beyond the simple identity of the alternative. This is particularly important
because our full sample contains 5 lotteries with $-amounts that increase monotonically. We should ensure that our results
are not simply driven by a monotonic relationship in these lotteries. Second, because the alternative-specific indicators
control for the average valuation in the sample, the coefficients on the value signals will then measure the degree to which
value signals capture deviations in consumer valuation from the sample average. This will allow us to test hypotheses
about the role of different brain regions.

We report the estimates with alternative-specific indicators in Table 5. The role of the proxy variables under this
specification is consistent with the results previously reported. The estimates of both α1 and α2 are still positive and
significant, and increase substantially with the proxy variable correction. Our estimate of the standard deviation of the
measurement error is consistent at 1.3 times that of the fluctuations in valuation ϵjt . The significance of the alternative-
level indicator variables is evidence that there is considerable correlation in the preferences of NYU undergraduates in
the Levy et al. (2011) sample. There is also a dramatic improvement in the fit. This suggests that there is a substantial
amount of variance in the choice data that is not accounted for solely by the value signals, nor completely corrected for
by our proxies for measurement error.

The degree to which the coefficients change when including alternative-specific indicators is also interesting (compared
to Model 3, see Fig. 2). When the sample-average valuations are controlled for, the coefficient for vSTR decreases by over
Please cite this article as: R. Webb, N. Mehta and I. Levy, Assessing consumer demand with noisy neural measurements. Journal of Econometrics (2020),
https://doi.org/10.1016/j.jeconom.2020.07.028.

50% (2.3901 vs. 1.3844, p < 0.001). By contrast, the decrease in the coefficient for mPFC across specifications is smaller



R. Webb, N. Mehta and I. Levy / Journal of Econometrics xxx (xxxx) xxx 13
Table 5
Model estimates including brand dummy variables.

4: Baseline random-effect 5: Proxy variable correction

Estimate Std Err Estimate Std Err.

mPFC α1 0.0551 (0.1169) 0.2239 (0.1182)
vSTR α2 0.9038 (0.2055) 1.3844 (0.2150)
OCC α3 −0.1009 (0.1174)
pInsula α4 −1.5452 (0.1487)
Meas. Err. σME 1.6559 (0.0587) 1.7326 (0.0613)

Akon λ1 – –
Beethoven λ2 1.4602 (0.2098) 1.2050 (0.208)
Dali λ3 1.5472 (0.2194) 0.9969 (0.2198)
Dodgeball λ4 1.4196 (0.2110) 0.5883 (0.2081)
Dreamgirls λ5 2.5933 (0.2107) 2.7464 (0.2153)
Hosseini λ6 4.8232 (0.2468) 4.9970 (0.2519)
Klimt λ7 1.2759 (0.2143) 1.0890 (0.2187)
Lileger λ8 2.4091 (0.2149) 2.1094 (0.2144)
Madagascar λ9 1.9815 (0.2118) 2.0866 (0.2142)
McCarthy λ10 1.7940 (0.2059) 1.5345 (0.2046)
Moleskine λ11 2.7467 (0.2201) 2.7579 (0.2220)
Monet λ12 1.0870 (0.2139) 0.3408 (0.2103)
Norah Jones λ13 2.5358 (0.2236) 2.0210 (0.2190)
Pan’s Labrynth λ14 2.2545 (0.2157) 2.0767 (0.2187)
Planner λ15 3.2640 (0.2196) 2.7237 (0.2142)
$10 Lottery λ16 1.8747 (0.2071) 1.0056 (0.2082)
$15 Lottery λ17 4.6623 (0.2438) 4.2870 (0.2388)
$20 Lottery λ18 4.5473 (0.2461) 4.2053 (0.2405)
$25 Lottery λ19 5.6134 (0.2756) 5.1147 (0.2708)
$30 Lottery λ20 6.7798 (0.3188) 6.9765 (0.3239)

LL (N = 4180) −1501.2 −1474.2
BIC (N = 4180) 3208.3 3140.2

Fig. 2. The change in utility coefficients for different value regions (mPFC and vSTR) after controlling for average valuations across consumers.

and not significantly different (0.4046 vs. 0.2239, p = 0.223). The relative changes of the utility coefficients under this
specification is consistent with the hypothesis that activity in the vSTR might represent a more common component of
utility that is shared across consumers, perhaps because it codes for a more affective response (Knutson and Genevsky,
2018).

5.4. Predicting demand

A proposed advantage of neuroeconomic methods is a richer datasource on which to assess consumer demand.
This includes estimating the marginal effect of manipulating a characteristic, either in isolation, or in conjunction with,
traditional observables (Telpaz et al., 2015; Boksem and Smidts, 2015; Venkatraman et al., 2015; Genevsky et al., 2017).
The presence of error in neural measurements, however, will bias such estimated marginal effects, with important
implications for demand prediction.

To quantify the degree of this bias in our dataset and assess predictive performance, we conduct two validation
exercises in which we split the overall sample into an estimation sample and a hold-out sample. The estimation sample
Please cite this article as: R. Webb, N. Mehta and I. Levy, Assessing consumer demand with noisy neural measurements. Journal of Econometrics (2020),
https://doi.org/10.1016/j.jeconom.2020.07.028.
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1: Logit 2: Baseline random-effect 3: Proxy variable correction

Estimate (S.E.) Estimate (S.E.) Estimate (S.E.)

mPFC α1 0.4442 (0.0731) 1.0166 (0.1482) 1.1741 (0.1556)
vSTR α2 0.0094 (0.1696) 0.7217 (0.2663) 2.5645 (0.3494)
OCC α3 −0.8104 (0.1481)
pInsula α4 −0.5559 (0.1767)
Meas. Err. σME 2.0134 (0.0867) 2.0795 (0.0817)

LL (N = 2310) −1586.0 −973.7 −954.3
BIC (N = 2310) 3187.6 1970.7 1947.2

Table 7
Prediction results on sample of lotteries (N = 1870).

1: Logit 2: Baseline random-effect 3: Proxy variable correction

Log likelihood −1282.4 −746.5 −730.2
Pseudo R2 0.011 0.424 0.437
MSPE 460.8 451.9 438.2

consists of the binary choices between the fifteen non-lottery items made by all 11 consumers (for a total of 320× 11 =

2310 observations, since each consumer had to repeat each binary choice pair). We will define the hold-out for each
exercise shortly.

We first re-estimate three models on the sub-sample of data that does not contain the lotteries: the simple Logit model
(Model 1), the baseline random-effect model (Model 2), and our proxy variable correction (Model 3). Results are reported
in Table 6, and are consistent with those reported in Sections 5.1 and 5.3. After including proxy variables to correct for
measurement error, we observe a positive and significant estimates for α1 and α2 and negative estimates for α3 and α4.
To assess the predictive performance of our approach, we calculated fit metrics for a hold-out sample consisting of all
remaining choices between the five lotteries as well as each pair consisting of a lottery and a consumer good (Table 7).
The out-of-sample Log Likelihoods, Pseudo R2, and Mean-Squared Prediction Error all decrease after the measurement
error correction.2526

One feature of the lottery hold-out sample provides an ideal prediction test-case for assessing the degree of bias in the
sample. Because the dollar amounts of these lotteries increased monotonically ($10, $15, $20, $25, and $30 if win, and
$0 if lose), it is possible to analyse the change in demand as the lottery amount increases, relative to the reference $10
lottery. Unlike the other alternatives in our dataset, subjects with completely transitive preferences should always choose
the higher lottery (relative to the $10 reference lottery). Indeed, this is what we find in our data; all consumers chose
the relatively higher-valued lottery. This allows the lotteries to be ordered in a manner that is homogeneous across all
consumers (unlike the other goods for which consumers had more idiosyncratic preferences), and implies that the model
which predicts a higher choice probability for a higher-valued lottery will be a better model.

Therefore to assess the degree of bias, we also computed the predicted probabilities for each lottery using the difference
between the average BOLD activity and the $10 lottery. Since the proxy areas are solely used to control for measurement
error, thus achieve less-biased estimates, we calculated the predicted probabilities only using the estimated coefficients
for the mPFC and vSTR from Table 7. These fitted probabilities are reported in Fig. 3. We find that our corrected estimates
yields a predicted change in demand that is over twice as large as our baseline model (relative to chance), and over four
times larger than a basic Logit specification.

6. Conclusion

We have proposed a method to directly control for the error-in-variables problem inherent in relating choice behaviour
to noisy neural measurements. This issue has remained unexamined so far in the literature, but it has severe implications
for estimates of the contribution to a utility specification from different brain regions. Our method considerably reduces
the bias in these estimates, providing improved inference and performance in an out-of-sample demand prediction
exercise. Perhaps most importantly, our method does not place stringent properties on the experimental design, such
as repeated choice trials or additional calibration trials. It is thus widely applicable, both to the large number of existing
datasets in the literature and to future studies.

25 In this exercise, the out-of-sample likelihood is calculated by integrating over the distributions of the unobservables (measurement error and
he control signals). Since the joint likelihood for a given individual consists of the product of the likelihood across all choices, it is crucial to account
or this correlation across choices when computing the out-of-sample likelihood.
26 In discrete choice applications, the pseudo R2 typically range from 0.20 to 0.55, with the best-fitting models including alternate specific dummies
nd information on product characteristics (which we have not included). At the subject level, the proxy variable correction improves prediction
esults for 8 of the 11 consumers, has no effect for one, and performs worse for 2 of the 11.
Please cite this article as: R. Webb, N. Mehta and I. Levy, Assessing consumer demand with noisy neural measurements. Journal of Econometrics (2020),
https://doi.org/10.1016/j.jeconom.2020.07.028.



R. Webb, N. Mehta and I. Levy / Journal of Econometrics xxx (xxxx) xxx 15
Fig. 3. Out-of-sample prediction of lottery choices. (Left) The average BOLD measurements for each lottery amount, relative to the $10 lottery. The
average activity for each subject is also plotted in grey. (Right) The predicted choice probabilities based on model estimates, at the average BOLD
measurements for each lottery. The actual choice probabilities in the sample are 1, since the lotteries are monotonic.

Our proposed method relies on the econometrician’s choice of a proxy variable that is uncorrelated with choice
behaviour but still correlated with signals from value regions of the brain. We considered two candidate control areas,
the OCC and the pInsula, and our empirical results are consistent with a substantial reduction in the bias caused by the
error-in-variables problem. We chose these two control areas based on previous literature and verified their suitability
via a simple reduced-form analysis, but the tests that we have conducted so far should be seen as dispositive and not
conclusive. Indeed, there are also many more possible brain regions we could have analysed. We did not conduct a full
search for proxy variables that might satisfy the required proxy variable conditions. In principle, a reduced-form first-stage
could be automated to identify ‘‘optimal’’ control variables amongst the large number of voxels we did not study, leading
to a greater reduction in the bias of the estimated marginal effects.

A reduction in the bias of marginal effects is desirable for multiple reasons. Not only does it provide more accurate
demand predictions based on neural measurements, but will also sharpen inference about the role of different brain areas
in contributing towards utility. After we control for measurement error, we find a substantial decrease in the heterogeneity
in the marginal coefficients of utility. For the vSTR in particular, we find that the variation in its contribution to utility is
near zero across consumers in our sample. This suggests that the scale between neural activity and the choice probabilities
might be stable across consumers in this brain region, at least under controlled conditions. Further work is needed to
Please cite this article as: R. Webb, N. Mehta and I. Levy, Assessing consumer demand with noisy neural measurements. Journal of Econometrics (2020),
https://doi.org/10.1016/j.jeconom.2020.07.028.
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etermine if this result generalizes across subject samples, and perhaps more importantly, across experimental designs
hich manipulate the distribution of choice objects that consumers might encounter.
A reduction in bias also will considerably reduce the occurrence of Type II errors in neuroeconomic studies. While the

roblem of ‘‘false negatives’’ is generally not considered as serious as ‘‘false positives’’ (and rightly so), a bias in estimated
arginal effects towards zero actually make the conclusions of recent studies conservative; the true effect is likely larger

han reported. Moreover, when the relationship between a neural variable and choice is biased towards zero, this will
ncrease the probability that a false null hypothesis about the role of a brain area might fail to be rejected. In other words,
sing our proposed measurement error correction can help clarify whether studies which do not currently find a significant

role for mPFC or vSTR in predicting behaviour do so because of measurement error, or because these regions are indeed
not-predictive in that context. It also helps clarify why adding signals from additional brain regions like the Insula might
sharpen inference about the role of mPFC and vSTR (e.g. Knutson et al., 2007). In particular, the analyst must exercise
caution when inferring whether control regions are indeed involved in valuation, per se, or simply capturing the effects
of measurement error.

Our study also sounds a cautionary note about the interpretation of results from modern machine-learning classifiers
in neuro-prediction studies. Since the goal of such classifiers is solely prediction, they search the voxel space for the
combination of signals which maximize predictive accuracy via a trade-off between bias and variance. Our results suggest
that such methods will include voxels from regions of the brain that reduce the bias of the prediction model due to
correlation in measurement error. Of course, for the purposes of prediction, this is completely reasonable. However
interpreting the resulting output of these classifiers as ‘‘valuation maps’’ is clearly fraught with issues. As we demonstrate,
signals from some regions of the brain can improve predictive performance even if they are not directly involved in
valuation. Future research should consider how to interpret the voxel maps from such studies, and how they might inform
the choice of proxy variables in our proposed method.

One of the sources of measurement error in a neuro-prediction exercise arises undoubtedly from variation in attention
during measurement trials. The scanning portion of the experiment did contain an attention check — subjects were asked
to choose between an item on the screen and an amount of money. All subjects registered a choice on these trials. Of
course, this attention could waver over trials. Future studies should consider possible techniques for assessing attention,
including eye-tracking analysis, to be used as an additional control.

Finally, we believe our proxy-variable method can be broadly applied. We have considered the BOLD signal from fMRI
scanning because it is a widely-used measure of neural activity in the neuroeconomics literature. However in applied
research, much of the market research performed in the commercial sector use cheaper, less precise methods such as
EEG. Our proposed methodology is equivalently applicable to such measurement technologies, provided that suitable
proxy variables can be found.

Appendix A. Relative degree of measurement error

To assess the degree of measurement error in the BOLD signal in each value region, we compare an estimate of the
unexplained variance of the BOLD measurement after presentation of an alternative to the overall variance of the BOLD
signal. This initial estimate is achieved by regressing the BOLD signal measured during the measurement stage (in each
of the two value regions, for each subject) on the presentation of the different alternatives to that subject. The residual
variation in the BOLD signal in this regression will provide us with an estimate of the variance in the BOLD measurement
due to measurement error.

Since each consumer is presented with J alternatives, there are a total of M× J measurement trials per consumer, with
the M measurements randomly dispersed throughout. We estimate a model of the M × J neural measurements across all
consumers c ∈ C . Let Sc,r,m be the BOLD measurement in brain region r ∈ A when a consumer is exposed to an alternative
during measurement trial m. We represent it as a function of the presentation of alternatives and a stochastic component

Sc,r,m = α1,c + Ijmα2 + Ic,jm α3 + ϵc,r,m (11)

where Ij is a vector of dummy variables for the presentation of item j across all consumers, and Ic,j is for the presentation
of alternative j within each consumer. The J-vector α2 therefore represents the shift in measured neural activity when all
consumers are exposed to alternative j (relative to alternative 1), and the (J − 1)(C − 1) parameter vector α3 represents
the consumer-specific shift. The error term, ϵ, is assumed to be independent over measurement trials, consumers, and
brain areas.

Evidence for Condition 3 can be found in the residuals of Eq. (11). The error term in this regression is akin to the
measurement error in the signal: it is the variation in BOLD activity not explained by the presentation of the alternative.
OLS provides an estimate of the variance of this error, σ̂ 2

r , for each brain region. The estimate of the variance from the
sample mean of the measurement error is therefore σ̂2

r
M . We are interested in the relative size of this variance relative

o the overall variance of the sample mean 1
M

∑M
m=1 Sc,r,m over all alternatives. By definition it is smaller, though we

still find that σ̂2
r
M comprises just over half of the overall variance (mPFC: 0.527; vSTR: 0.536). We can safely say that the

measurement error is substantial even if we average the BOLD signal across the M measurement trials.
Please cite this article as: R. Webb, N. Mehta and I. Levy, Assessing consumer demand with noisy neural measurements. Journal of Econometrics (2020),
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Appendix B. Estimation procedure

We state here the estimation procedure for the model pooled across all subjects (i.e. without unobserved heterogene-
ity). The parameters can be represented by a vector Θ ≡ [θ1, σ ], where θ ≡ [α1, α2, α3, α4]. Recall that all consumers
were given T pairwise choices amongst the J alternatives in the choice stage. Consider the case where consumer c was
given a choice amongst alternatives j, k ∈ J during choice occasion t . The probability of choosing alternative j over k,
conditional on the measurement errors for the two alternatives, ςc,j and ςc,k, is

Pr
(
dj,kc = 1|θ, ςc,j, ςc,k

)
= Logit

(
A∑

a=1

αa
(
B̄a,c,j − B̄a,c,k

)
+ ςc,j − ςc,k

)
,

where dj,kc = 1 is a binary indicator if alternative j is chosen over k. Consumer c ’s likelihood over all her pairwise choices
conditional on the consumer specific measurement error draws {ςc,j}

J
j=1 is therefore

Lc
(
θ, {ςc,j}

J
j=1

)
=

J−1∏
k=1

J∏
k>j

[
Pr
(
dj,kc = 1|θ, ςc,j, ςc,k

)dj,kc
× Pr

(
dj,kc = 0|θ, ςc,j, ςc,k

)1−dj,kc
]

.

We next simulate R = 30,000 Halton draws of each of the errors in {ςc,j}
J
j=1 from N(0, σ 2) to get the unconditional

likelihood of all pairwise choices as

L̂c (θ, σME) =
1
R

R∑
r=1

Lc
(
θ, {ςc,j}

J
j=1

)
.

Given the unconditional likelihood for consumer c , the sample log likelihood across all consumers will be

l(Θ) =

C∑
c=1

log L̂c(θ, σME),

nd the SML estimates are given by

ΘSML= argmax
θ

l(Θ).

eferences

igner, D.J., 1974. MSE dominance of least squares with errors-of-observation. J. Econometrics 2 (4), 365–372.
arron, H.C., Dolan, R.J., Behrens, T.E.J., 2013. Online evaluation of novel choices by simultaneous representation of multiple memories. Nature

Neurosci. 16 (10), 1492–1498.
artra, O., McGuire, J.T., Kable, J.W., 2013. The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural

correlates of subjective value. NeuroImage 76, 412–427.
oksem, M.A.S., Smidts, A., 2015. Brain responses to Movie Trailers Predict Individual Preferences for Movies and their population-wide commercial

success. J. Mark. Res. 52 (4), 482–492.
lithero, J.A., Rangel, A., 2013. Informatic parcellation of the network involved in the computation of subjective value. Soc. Cogn. Affect. Neurosci. 9

(9), 1–14.
elgado, M.R., Beer, J.S., Fellows, L.K., Huettel, S.A., Platt, M.L., Quirk, G.J., Schiller, D., 2016. Viewpoints: Dialogues on the functional role of the

ventromedial prefrontal cortex. Nature Neurosci. 19 (12), 1545–1552.
alk, E.B., Berkman, E.T., Lieberman, M.D., 2012. From Neural Responses to Population Behavior: Neural Focus Group predicts population-Level Media

Effects. Psychol. Sci. 23 (5), 439–445.
ehr, E., Rangel, A., 2011. Neuroeconomic Foundations of Economic Choice–Recent Advances. J. Econ. Perspect. 25 (4), 3–30.
enevsky, A., Knutson, B., 2015. Neural affective Mechanisms Predict Market-Level Microlending. Psychol. Sci. 26 (9), 0956797615588467–1422.
enevsky, A., Yoon, C., Knutson, B., 2017. When brain beats behavior: Neuroforecasting Crowdfunding Outcomes. J. Neurosci. 37 (36), 8625–8634.
ratton, C., Laumann, T.O., Nielsen, A.N., Greene, D.J., Gordon, E.M., Gilmore, A.W., Nelson, S.M., Coalson, R.S., Snyder, A.Z., Schlaggar, B.L.,

Dosenbach, N.U.F., Petersen, S.E., 2018. Functional brain networks are dominated by stable group and individual factors, not cognitive or daily
variation. Neuron 98 (2), 439–452.e5.

ross, J., Woelbert, E., Zimmermann, J., Okamoto-Barth, S., Riedl, A., Goebel, R., 2014. Value signals in the prefrontal cortex predict individual
preferences across reward categories. J. Neurosci. 34 (22), 7580–7586.

are, T.A., Camerer, C.F., Knoepfle, D.T., Rangel, A., 2010. Value computations in ventral medial prefrontal cortex during charitable decision making
incorporate input from regions involved in social cognition. J. Neurosci. 30 (2), 583–590.

arris, K.M., Keane, M.P., 1999. A model of health plan choice:: Inferring preferences and perceptions from a combination of revealed preference
and attitudinal data. J. Econometrics 89 (1–2), 131–157.

su, M., Krajbich, I., Zhao, C., Camerer, C.F., 2009. Neural response to reward anticipation under risk is nonlinear in probabilities. J. Neurosci. 29 (7),
2231–2237.

armarkar, U.R., Shiv, B., Knutson, B., 2015. Cost conscious? The neural and behavioral impact of Price Primacy on Decision Making. J. Mark. Res. 52
(4), 467–481.

haw, M.W., Grab, D.A., Livermore, M.A., Vossler, C.A., Glimcher, P.W., 2015. The measurement of subjective value and its relation to contingent
valuation and environmental Public Goods. PLoS One 10 (7), e0132842.

nutson, B., Genevsky, A., 2018. Neuroforecasting aggregate choice. Curr. Dir. Psychol. Sci. 27 (2), 110–115.
nutson, B., Rick, S., Wimmer, G.E., Prelec, D., Loewenstein, G., 2007. Neural predictors of purchases. Neuron 53 (1), 147–156.
Please cite this article as: R. Webb, N. Mehta and I. Levy, Assessing consumer demand with noisy neural measurements. Journal of Econometrics (2020),
https://doi.org/10.1016/j.jeconom.2020.07.028.

http://refhub.elsevier.com/S0304-4076(20)30250-5/sb1
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb2
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb2
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb2
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb3
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb3
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb3
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb4
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb4
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb4
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb5
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb5
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb5
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb6
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb6
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb6
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb7
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb7
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb7
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb8
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb9
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb10
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb11
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb11
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb11
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb11
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb11
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb12
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb12
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb12
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb13
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb13
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb13
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb14
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb14
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb14
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb15
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb15
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb15
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb16
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb16
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb16
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb17
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb17
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb17
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb18
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb19


18 R. Webb, N. Mehta and I. Levy / Journal of Econometrics xxx (xxxx) xxx

L

L

L
L

L

L

M
M

M
M
P

P

S
S
T
T
V

W
W

W
W
Y

ebreton, M., Jorge, S., Michel, V., Thirion, B., Pessiglione, M., 2009. An automatic valuation system in the human brain: evidence from functional
neuroimaging. Neuron 64 (3), 431–439.

evy, D., Glimcher, P.W., 2011. Comparing apples and oranges: Using reward-specific and reward-general subjective value representation in the brain.
J. Neurosci. 31 (41), 14693–14707.

evy, D.J., Glimcher, P.W., 2012. The root of all value: a neural common currency for choice. Curr. Opin. Neurobiol. 22 (6), 1027–1038.
evy, I., Lazzaro, S., Rutledge, R.B., Glimcher, P.W., 2011. Choice from non-choice: predicting consumer preferences from blood oxygenation

level-dependent signals obtained during passive viewing. J. Neurosci. 31 (1), 118–125.
ogothetis, N.K., 2002. The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philos. Trans. R. Soc.

Lond. Ser. B Biol. Sci. 357 (1424), 1003–1037.
usk, J.L., Crespi, J.M., McFadden, B.R., Cherry, J.B.C., Martin, L., Bruce, A., 2016. Neural antecedents of a random utility model. J. Econ. Behav. Organ.

132, 93–103.
cCallum, B.T., 1972. Relative Asymptotic Bias from Errors of Omissions and measurement. Econometrica 40 (4), 757–758.
cClure, S.M., Li, J., Tomlin, D., Cypert, K.S., Montague, L.M., Montague, P.R., 2004. Neural correlates of behavioral preference for Culturally Familiar
Drinks. Neuron 44 (2), 379–387.

cFadden, D.L., 2001. Economic choices. Amer. Econ. Rev. 91 (3), 351–378.
cFadden, D.L., 2013. The new science of pleasure. In: Hess, S., Daly, A. (Eds.), Handbook of Choice Modelling. books.google.com.
lassmann, H., O’Doherty, J.P., Rangel, A., 2007. Orbitofrontal cortex encodes willingness to pay in everyday economic transactions. J. Neurosci. 27

(37), 9984–9988.
lassmann, H., O’Doherty, J.P., Shiv, B., Rangel, A., 2008. Marketing actions can modulate neural representations of experienced pleasantness. Proc.

Natl. Acad. Sci. 105 (3), 1050–1054.
mith, A., Bernheim, B.D., Camerer, C.F., Rangel, A., 2014. Neural activity Reveals Preferences without Choices. Am. Econ. J. Microecon. 6 (2), 1–36.
taiger, D., Stock, J.H., 1997. Instrumental variables regression with Weak instruments. Econometrica 65 (3), 557.
elpaz, A., Webb, R., Levy, D.J., 2015. Using EEG to predict Consumers’ Future Choices. J. Mark. Res. 52 (4), 511–529.
usche, A., Bode, S., Haynes, J.-D., 2010. Neural responses to unattended products predict later Consumer Choices. J. Neurosci. 30 (23), 8024–8031.
enkatraman, V., Dimoka, A., Pavlou, P.A., Vo, K., Hampton, W., Bollinger, B., Hershfield, H.E., Ishihara, M., Winer, R.S., 2015. Predicting advertising

success beyond traditional measures: New insights from neurophysiological methods and market response modeling. J. Mark. Res. 52, 436–452.
ebb, R., 2019. The (Neural) dynamics of Stochastic Choice. Manage. Sci. 65 (1), 230–255.
ebb, R., Levy, I., Lazzaro, S., Rutledge, R.B., Glimcher, P.W., 2019. Neural random utility: Relating cardinal neural observables to stochastic choice
behaviour. J. Neurosci. Psychol. Econ. 12 (1), 45–72.

ickens, M.R., 1972. A note on the use of Proxy Variables. Econometrica 40 (4), 759–761.
ooldridge, J.M., 2002. Econometric Analysis of Cross Section and Panel Data. The MIT Press.
atchew, A., Griliches, Z., 1985. Specification Error in Probit Models. Rev. Econ. Stat. 67 (1), 134–139.
Please cite this article as: R. Webb, N. Mehta and I. Levy, Assessing consumer demand with noisy neural measurements. Journal of Econometrics (2020),
https://doi.org/10.1016/j.jeconom.2020.07.028.

http://refhub.elsevier.com/S0304-4076(20)30250-5/sb20
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb20
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb20
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb21
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb21
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb21
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb22
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb23
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb23
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb23
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb24
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb24
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb24
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb25
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb25
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb25
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb26
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb27
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb27
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb27
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb28
https://books.google.com/
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb30
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb30
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb30
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb31
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb31
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb31
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb32
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb33
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb34
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb35
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb36
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb36
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb36
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb37
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb38
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb38
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb38
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb39
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb40
http://refhub.elsevier.com/S0304-4076(20)30250-5/sb41

	Assessing consumer demand with noisy neural measurements
	Introduction
	Background
	fMRI measurements of valuation
	Data
	Localization of subjective value in mPFC and vSTR
	Measuring the valuations of consumer items
	Choice task


	Reduced form evidence
	Model
	Neural random utility model
	Alleviating the error-in-variables problem
	Instruments for measurement error
	Proxies for measurement error

	Estimation details

	Empirical results
	Model estimates without heterogeneity in utility coefficients
	Model estimates with heterogeneity in utility coefficients
	Alternative-specific indicators
	Predicting demand

	Conclusion
	Appendix A. Relative Degree of Measurement Error
	Appendix B. Estimation Procedure
	References


