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Levy I, Snell J, Nelson AJ, Rustichini A, Glimcher PW. Neural
representation of subjective value under risk and ambiguity. J Neu-
rophysiol 103: 1036–1047, 2010. First published December 23, 2009;
doi:10.1152/jn.00853.2009. Risk and ambiguity are two conditions in
which the consequences of possible outcomes are not certain. Under
risk, the probabilities of different outcomes can be estimated, whereas
under ambiguity, even these probabilities are not known. Although
most people exhibit at least some aversion to both risk and ambiguity,
the degree of these aversions is largely uncorrelated across subjects,
suggesting that risk aversion and ambiguity aversion are distinct
phenomena. Previous studies have shown differences in brain activa-
tions for risky and ambiguous choices and have identified neural
mechanisms that may mediate transitions from conditions of ambigu-
ity to conditions of risk. Unknown, however, is whether the value of
risky and ambiguous options is necessarily represented by two distinct
systems or whether a common mechanism can be identified. To
answer this question, we compared the neural representation of
subjective value under risk and ambiguity. fMRI was used to track
brain activation while subjects made choices regarding options that
varied systematically in the amount of money offered and in either the
probability of obtaining that amount or the level of ambiguity around
that probability. A common system, consisting of at least the striatum
and the medial prefrontal cortex, was found to represent subjective
value under both conditions.

I N T R O D U C T I O N

For many of the decisions we make, we must choose
between outcomes that are not certain. In some cases, we can
at least assess the probabilities for different outcomes, such as
when a fair coin is tossed, whereas in other cases, even the
probabilistic structure of the possible outcomes is unknown. In
economics, the first condition is termed “risk” and the second
“ambiguity,” and a long line of studies has shown that most
people are averse to both of these conditions. Risk aversion is
the tendency to prefer high probabilities of low payoffs to low
probabilities of high payoffs even if the expected value (EV,
the product of probability and amount, see Glimcher 2008 and
Weber and Camerer 1987 for reviews) is higher for the latter
option (Bernoulli 1738/1954). For example, many people will
take $50 for sure over a 50% chance of winning $120, although
the EV of the risky prospect is $60 (Abdellaoui et al. 2007).
Ambiguity aversion can be illustrated using the Ellsberg para-
dox (Ellsberg 1961). Imagine two urns, each containing 60 red
and blue poker chips. In one urn, 30 of the chips are red and
30 are blue (risky urn). In the other urn, the composition of red
and blue chips is unknown (ambiguous urn). When subjects are
asked to choose one of the urns and bet on the color of a chip

drawn from that urn, most prefer to bet on the risky urn, even
if it offers a lower payoff than the ambiguous one. Note that the
winning probability in both cases is the same. For the risky urn,
the probability of drawing either color is 0.5. For the ambig-
uous urn, the probability of drawing a particular color is
unknown, but because the subject picks the winning color, the
probability is again 0.5. Still, most people prefer to avoid
ambiguous options, a finding replicated many times (Camerer
and Weber 1992). Ambiguity aversion has also been observed
under conditions of “partial” ambiguity, where although the
exact probability for a given outcome was not known, a range
of possible probabilities could be estimated (e.g., between 0.2
and 0.8) (Becker and Brownson 1964; Curley and Yates 1985;
Rustichini et al. 2005).

Risk and ambiguity aversions are two different phenomena
of very different magnitudes: risk aversion is simply a trade-off
between amount and probability according to each individual’s
taste. Ambiguity aversion, which tends to be much stronger, is
a puzzling phenomenon: in the normative sense, it seems
irrational; in the practical sense, it leads to highly disadvanta-
geous results in many domains including health, finance, and
legal issues (Camerer and Weber 1992). Although several
explanations for ambiguity aversion have been suggested [e.g.,
sense of incompetence (Heath and Tversky 1991), comparative
ignorance (Fox and Tversky 1995), informed opponent (Kuh-
berger and Perner 2003), other evaluation (Curley et al. 1986);
see Camerer and Weber (1992) for review], its source remains
unclear.

The marked difference in behavior between the two decision
situations raises several questions at the neural level. One
question is simply how the brain processes different situations
in which the outcome is not known with certainty: are different
circuits involved in the processing of risk and ambiguity or
does a single circuit signal each state with a different pattern of
activation? Another question is which neural structures medi-
ate the common transition from ambiguity to risk that occurs
when ambiguous probabilities are repeatedly sampled and the
underlying probability distribution learnt. A final intriguing
question is how the value of risky and ambiguous options is
represented neurally, and whether distinct neural systems rep-
resent value under each condition.

To answer the first question Hsu and colleagues (2005) used
functional MRI (fMRI) to compare neural activity in response
to ambiguous and risky options and found higher activation in
the orbitofrontal cortex (OFC) to ambiguity compared with
risk. The authors have also found that patients with OFC
lesions did not exhibit either risk or ambiguity aversion.
Taking these results together, it seems that the same area, the
OFC, is involved in the processing of both risk and ambiguity
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and that it has a role in signaling how much is unknown,
showing higher activation when less is known.

Huettel and colleagues (2006) examined the second question
by employing a design in which ambiguous lotteries were
resolved at the end of each trial, allowing subjects to learn the
hidden probability distribution over the course of the experi-
mental session. They found higher activity for ambiguous
compared with risky lotteries in inferior frontal gyrus (IFG),
anterior insula and posterior parietal cortex. Activity in IFG
was also correlated with the level of ambiguity aversion across
subjects, suggesting that this area at least has a role in the
process of resolving ambiguity. This result has recently been
extended to negative outcomes in the absence of choice (Bach
et al. 2009).

However, no previous study addressed the question of the
neural representation of subjective value under risk and ambi-
guity. A similar question has been raised for other types of
decisions, such as intertemporal choice (Kable and Glimcher
2007; McClure et al. 2004a), and has been the subject of much
debate. Examining the representation of value under risk and
ambiguity is therefore of interest both for understanding the
neural processing of uncertainty and in relation to the repre-
sentation of value in general.

Here we asked how the brain represents subjective value
under risk and ambiguity, and specifically whether shared or
distinct neural mechanisms underlie the encoding of value
under these two conditions. To answer this question, we had
subjects make decisions under different levels of either risk or
ambiguity while we measured neural activity using fMRI. We
then used behavioral data to estimate the subjective value1

(SV) that each option had to each individual subject and looked
for neural correlations with that measure separately under risk
and ambiguity.

Our results reveal several areas, including the striatum and
the medial prefrontal cortex (MPFC), the activity of which was
significantly correlated with SV. Crucially, within the limits of
3T fMRI, all the areas that provided information about SV in
ambiguous trials also provided such information in risky trials
and vice versa. The results extend previous reports of the
neural processing of risky and ambiguous choices by outlining
a unified valuation system that represents SV under both risk
and ambiguity.

M E T H O D S

Subjects

Twenty-two healthy volunteers (14 women, 20 right-handed, ages:
19–35) participated in experiment 1, and 15 healthy volunteers (10
women, all right-handed, ages: 20–41) participated in experiment 2.
Of the subjects who participated in experiment 1, 18 participated in
two scanning sessions and 4 participated in a single session. Data from
four subjects in experiment 1 and four subjects in experiment 2 were
discarded: four for excessive head motion (�2 mm), one for problems

in data acquisition (spikes in the images), two because their behavior
was not lawful in the amount of the options (i.e., they did not prefer
higher amounts to lower ones), suggesting that they failed to under-
stand the task, and one whose behavior could not be fit with our
behavioral model. Procedures were in compliance with the safety
guidelines for MRI research and approved by the University Com-
mittee on Activities Involving Human Subjects at New York Univer-
sity. All subjects had normal or corrected to normal vision and
provided written informed consent.

Imaging

fMRI at 3T (Allegra, Siemens, Erlangen, Germany) was used to
measure blood-oxygen-level-dependent (BOLD) changes in cortical
activity. During each fMRI scan, a time series of volumes was
acquired using a T2*-weighted EPI pulse sequence (TR: 2,000 ms,
TE: 30 ms, flip angle: 75°, 36 3-mm slices with no inter-slice gap,
in-plane resolution 3 � 3 mm, FOV: 192 mm). Images were acquired
using a custom RF coil (NM-011 transmit head coil, NOVA Medical,
Wakefield, MA). In addition, T1-weighted high-resolution (1 � 1 �
1 mm3) anatomical images were acquired with an MP-RAGE pulse
sequence and used for volume-based statistical analysis. To minimize
head movement, subjects’ heads were stabilized with foam padding.
Stimuli were projected onto a screen at the back of the scanner, and
subjects viewed them through a mirror attached to the head coil.

Task

EXPERIMENT 1: CHOICE UNDER RISK AND AMBIGUITY. In each trial,
subjects were presented with a lottery of a varying winning probabil-
ity or ambiguity level and a varying amount. Subjects had to indicate
whether they wanted to play that lottery or whether they preferred to
play a reference lottery, which was the same for all trials (50% chance
of winning $5). The reference lottery was presented to the subjects
before the beginning of the experiment. The changing lottery appeared
on the screen in the form of an “urn” painted partly red and partly blue
(Fig. 1A). Subjects were told beforehand that all the urns that they
would see during the experiment contain a total number of 60 poker
chips but that the relative numbers of red and blue chips would
be different in different urns. The percentages of red and blue chips
were indicated by the red and blue regions of the urn. Numbers next
to the red and blue areas represented the amounts of money that could
be made if a chip of that color were drawn from the physical urn to
which the display corresponded. Those amounts were in an imaginary
currency, the exchange rate to dollars of which was 10 to 1. For
example, in Fig. 1A, if the subject draws a red chip, she will win $18,
whereas she will win nothing if a blue chip is drawn.

Each stimulus was presented for 2 s, followed by a 6-s delay period
during which a white fixation dot was presented at the center of the
screen. The fixation dot then changed into green, cuing subjects to
press one of two buttons on a response box to indicate their choice
between the lottery on the screen and the reference. The response had
to be made within 1.5 s and was followed by a 0.5-s visual presen-
tation of the pressed button (Fig. 1A). The buttons assigned for the
reference and for the option on the screen were counterbalanced
across subjects. Trials were interleaved with 10-s fixation periods.

In half of the trials, part of the urn was hidden by a gray occluder,
which was always placed over the center of the image (Fig. 1B, left).
The probability of drawing a chip of a certain color was therefore
incompletely known or ambiguous (ambiguous trials). For example,
in the leftmost urns in Fig. 1B, 25% of the chips are occluded, and thus
the probability of drawing a red chip can be anywhere between 37.5%
(if all the chips behind the occluder are blue) and 62.5% (if all the
chips behind the occluder are red). Similarly, the probability of
drawing a blue chip can also be anywhere between these two values.
Increasing the occluder size increases the ambiguity level or the range
of possible probabilities for drawing a red or blue chip. Three different

1 We use the term “subjective value” in a most general sense that can
encompass both risky and ambiguous options. For risky choices, the subjective
value is simply proportional to the expected utility of each choice, i.e., the
product of probability and utility. For ambiguous choices, the subjective value
is meant to capture an expected utility-like notion that could, in principle, also
include the notion of subjective probability but does not depend on it. In other
words, subjective value is the overall value of a certain option for an individual
subject, taking into account any possible parameter of that option, including
the parameters varied in this study, namely amount, probability and ambiguity.
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occluder sizes (covering 25, 50, or 75% of the urn) were used in the
experiment.

In the other half of the trials, the entire urn was visible such that
subjects had complete information about the ratio of red and blue
chips in the urn (risky urns; Fig. 1B, right). Three winning probabil-
ities were used, (0.13, 0.25, and 0.38), each corresponding to the worst
possible probability that could have been encountered under one of
the ambiguity levels.

Subjects were told that each image on the screen represented a
physical bag containing physical poker chips in it. Each unique image
corresponded to one unique physical bag. Thus each and every time
they encountered a 25% ambiguous display, they were making choices
about draws from the same bag. The three ambiguous bags were
sealed and were presented to the subjects before the beginning of the
experiment to ensure that the subjects were convinced that the number

of red and blue chips could not be adjusted by the experimenters after
the subjects had made their choices. Subjects signed their names
across the seal and checked the bags at the end of the experiment to
make sure that they had remained sealed throughout and after the
experiment.

In half the trials presented to the subjects from each bag red was
associated with winning a positive amount of money and blue yielded
a zero amount. In the other half of trials, the contingencies were
reversed. It is important to note that this design ensured that the
objective winning probability in all the ambiguous trials, averaging
across the 50% of red-winning and 50% of blue-winning trials, was
effectively fixed at 0.5.

Five amounts (5, 9.5, 18, 34, and 65 dollars) were used at each risk
and ambiguity level, yielding 60 unique trial types [(3 probabilities � 3
ambiguity levels) � (5 amounts) � (2 colors)]. The amounts were
varied slightly (�$0.1) on each trial to prevent subjects from devel-
oping automatic responses to particular lotteries.

Subjects participated in one or two sessions of six scans each. Each
scan started with a 10-s fixation period followed by a single choice
trial that was modeled separately in the subsequent analysis. Thirty
choice trials were then presented in a random order, thus resulting in
630-s-long scans. Each pair of scans contained a single repetition of
each unique choice. Subjects went through a few practice trials, first
outside of the scanner and then inside before beginning the actual
experiment.

As subjects had been informed at the beginning of the experiment,
at the end of the experiment, three trials from each session were
randomly selected and played for real money. To select each of those
trials, subjects first tossed a die to select one of the six scans in the
session and then drew a numbered chip from an opaque bag contain-
ing 31 chips. The number on the chip indicated which trial in that scan
would be played for real money. Subjects then drew a chip from the
bag chosen by them in each of the trials and were paid according to
the chip’s color and the payment contingency on that trial. Those
earnings were made in addition to the show-up fee. Subjects were
informed that they would conduct all of these procedures before the
experiment began.

Providing subjects with real monetary rewards was crucial because
it has often been shown that subjects can behave differently when they
are making real decisions for real money versus when they are making
“as-if” decisions that have no financial impact on their lives (Smith
1991). On the other hand, paying each and every choice would have
been highly problematic: first, either the cumulative payoff would
have become unfeasibly expensive or the value of each decision
becomes so small that they begin to approach the as-if study. Fur-
thermore, if one played every trial for a real payoff, then the outcome
of the entire “portfolio” of choices would be close to a certainty. To take
a simple example of this portfolio effect, if a subject goes through 100
trials in which the winning probability is 25%, then on average 25% of
the trials will pay off, and the variability around this average will be very
small. Our payment mechanism ensures that on the one hand subjects
treat every trial as if they will be paid according to the outcome of that
trial (because they do not know in advance which trials will be
selected) and on the other hand they will not be able to create a
portfolio. We also note that this is the standard payoff mechanism
employed in behavioral and experimental economics.

EXPERIMENT 2: CHOICE UNDER RISK—BROAD RANGE OF AMOUNTS

AND PROBABILITIES. Experimental design was similar to experiment 1
except that all trials were unambiguous and that a broader range of
probabilities (0.2, 0.4, 0.6, or 0.8) and amounts (11, 12, 15, 25, 40,
100, 170, or 250 dollars) was used, resulting in 64 unique trial types
(4 probabilities � 8 amounts � 2 colors). The reference option was
also changed (to ensure well-centered indifference points) and con-
sisted of a sure bet of $10.

All subjects participated in six scans, which took place in one
scanning session. Each scan started with a 10-s fixation period

FIG. 1. Risk and ambiguity task. A: on each trial, subjects chose between an
option that varied in both the amount and either the winning probability or the
level of ambiguity and a reference option of 50% chance of winning $5 that
was never presented visually. The varied option appeared on the screen as a
bag containing a total of 60 red and blue poker chips. The red and blue areas
of the bag represented the relative numbers of red and blue chips. The numbers
next to these areas represented the sums of money that could be won if a chip
of that color were drawn. In ambiguous trials, part of the bag was hidden by
a gray occluder. The image was presented for 2 s followed by a 6-s delay
period during which a white fixation was presented at the center of the screen.
The fixation dot then changed into green, cuing subjects to press 1 of 2 buttons
on a response box to indicate their choice between the lottery on the screen and
the reference. The response had to be made within 1.5 s and was followed by
a 0.5-s visual presentation of the pressed button, and a 10-s intertrial interval.
B, left: 3 levels of ambiguity (25, 50, or 75%, left) were used in ambiguous
trials. Importantly, each image on the screen referred to a single physical bag
with physical poker chips in it. Subjects knew that the bags were filled before
the beginning of the experiment and remained sealed during the experiment
(see METHODS). Note that because the true probability of winning in each of
these ambiguous lotteries was selected at random and fixed throughout a
session and half of all trials paid-off on “red” and the other half on “blue,”
therefore the true probability of winning across all ambiguous lotteries was 0.5,
just as in the Ellsberg Paradox. Right: 3 winning probabilities (0.13, 0.25, and 0.38)
were used in risky trials. Each probability is the worst possible probability under
one of the ambiguity levels.
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followed by a single-choice trial that was discarded from the neural
analysis. Thirty-two choice trials were then presented in a random
order, thus resulting in 670-s-long scans. At the end of the experiment,
three trials were randomly selected and played for real money similar
to experiment 1.

Data analysis

BEHAVIOR. To derive the risk and ambiguity attitudes of each
individual subject, we modeled the SV of each option using a power
function (Kahneman and Tversky 1979), which takes into account the
effect of ambiguity on the perceived probability (Gilboa and Schmei-
dler 1989)

Subjective value � �p � ��A

2
���V �

where p is the objective probability (experiment 1: 0.13, 0.25, or 0.38
for risky options, 0.5 for ambiguous options, and 0.5 for the reference;
experiment 2: 0.2, 0.4, 0.6, or 0.8 for the lotteries and 1 for the sure
bet), A is the ambiguity level (the fraction of the total probability that
is unknown: 0 for risky options, 0.25, 0.5, or 0.75 for ambiguous trials
and 0 for the reference), V is the amount that can be won (experiment
1: 5, 9.5, 18, 34, or 65 dollars for the lotteries and 5 dollars for the
reference; experiment 2: 11, 12, 15, 25, 40, 100, 170, or 250 dollars
for the lotteries and 10 for the sure bet), and � and � are subject-
specific risk and ambiguity attitude parameters, respectively. We
selected this representation not based on any belief that this function
uniquely describes ambiguity aversion but simply because it provides
a simple and behaviorally predictive assessment of the relative values
of risky and ambiguous lotteries at a subject-by-subject level. Note
also that the probability range, 0.13–0.5, largely obviated the need to
consider a probability weighting function (e.g., Tversky and Kahne-
man 1992), which has been shown to be significant only for proba-
bilities that are close to 0 or 1 (Prelec 1998).

Using maximum likelihood, the choice data of each subject was fit
to a single logistic function of the form

PV �
1

1 � e��SVF�SVV�

where Pv is the probability that the subject chose the variable lottery,
SVF and SVV are the SVs of the fixed and variable options, respec-
tively, and � is the slope of the logistic function, which is a third
subject-specific parameter.

FMRI. fMRI data were analyzed with the BrainVoyager QX software
package (Brain Innovation, Masstricht, Netherlands) and with additional
in-house software written in Matlab (MathWorks, Natick, MA). Prepro-
cessing of functional scans included discarding the first three volumes,
slice scan time correction, inter- and intrasession three-dimensional mo-
tion correction and removal of low frequencies up to five cycles per scan
(linear trend removal and high-pass filtering), and spatial smoothing
using a Gaussian filter (8-mm full-width at half-maximum value,
FWHM). The images were then co-registered with each subject’s high-
resolution anatomical scan, rotated into the AC-PC plane, and normalized
into Talairach space (Talairach and Tournoux 1988).

Statistical analysis was based on a general linear model (GLM)
(Friston et al. 1995). The time course of activity of each voxel was
modeled as a sustained response during each trial, convolved with a
standard estimate of the hemodynamic impulse response function
(Boynton et al. 1996).

Experiment 1. The main model consisted of five predictors: three
dummy predictors for mean activation in risky trials, ambiguous trials,
and the first trial of each scan, and two parametric predictors for the
SV of risky and ambiguous trials. The SV of each trial was calculated
using the individual subject- and session-specific � and �, which were

obtained from the behavioral fit. Because the reference option was
always the same, we used the SV of the variable lottery alone in the
predictor. The parametric predictors were normalized together to a
range of 0–1. Activation during intertrial intervals (10-s fixation
periods) served as baseline. The activity time course of each voxel in
each scan was converted to percent signal change (PSC), and the
model was independently fit to each voxel’s PSC, yielding five
coefficients for each subject, including one for SV under ambiguity
and one for SV under risk. These results were used in a group
random-effects analysis, which tested whether the mean effect at each
voxel was significantly different from zero across subjects. The maps
in Fig. 4 highlight voxels that showed a significant effect for SV under
ambiguity (top) or under risk (bottom).

Regions of interest (ROIs) were defined using the first scanning
session only and included voxels that both passed the per-voxel
statistical threshold and were part of clusters of at least six contiguous
functional voxels. Time course from the second session was then
sampled in each ROI and averaged across all voxels in the ROI, and
the GLM was fit to that mean time course. Figure 5 presents the
coefficients of the parametric predictors obtained in the ROI-based
GLM. Note that because one data set was used to localize ROIs and
another to sample activation, the results are statistically unbiased.

To look for activation that is correlated with the ambiguity level, we
constructed an additional model in which the parametric predictors
were replaced by three new predictors: amount, probability, and
ambiguity level. Figure 7 highlights voxels in which the correlation
with the ambiguity level in the first session was significant in a
random-effects group analysis.

Experiment 2. The main analysis was similar to experiment 1 but
with only three predictors: two dummy predictors for mean activation
and for the first trial in each scan and one parametric predictor for SV.
The maps in Fig. 6 highlight voxels that showed a significant effect for
SV in a random-effects group analysis.

Three additional models were calculated in which the SV predictor
was replaced by: the amount offered in each trial, the winning
probability in each trial, and the EV of each trial (the product of
amount and probability). Supplementary Figs. S3A and S42 present
the voxels that showed a significant effect using each of these models.
ROIs for Supplementary Fig. S3B were defined using the SV GLM in
odd scans, and the three different GLM’s were then fit to the mean
time course of even scans in each ROI.

PSYCHOPHYSIOLOGICAL INTERACTION ANALYSIS (PPI). To examine
the possible effect of experimental condition on the connectivity
patterns between different areas, we conducted PPI analyses (Friston
et al. 1997). In each model, one of the predictors was the time course
sampled from one of the ROIs identified in the experiment, a second
predictor was a task-related contrast: either mean activity under
ambiguity compared with mean activity under risk or SV under
ambiguity compared with SV under risk, and a third predictor con-
sisted of the interaction between the activation and contrast predictors.
An additional predictor consisted of the global activation averaged
across the entire brain. With such an analysis, a significant coefficient
of the interaction in a target voxel can be interpreted either as a
modulation exerted by the task on the connectivity pattern between
that voxel and the seed or as a modulation exerted by the activation in
the seed on the task-related activation in the target voxel.3 Supple-
mentary Fig. S6 highlights voxels in which either the coefficient of the

2 The online version of this article contains supplemental data.
3 Because we did not have a good estimate of the hemodynamic response

function (HRF) in each region of each subject, we chose not to deconvolve the
HRF out of the BOLD signal sampled from the seed ROI. While such
deconvolution can provide more correct results when the HRF is precisely
known, it could seriously hamper the results when the HRF is misestimated
(Gitelman et al. 2003). It should be noted, however, that for a slow experi-
mental design, the results of the two methods, using the true HRF, should be
very similar (Gitelman et al. 2003).
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seed activation (Fig. S6A) or the coefficient of the interaction term (B)
were significantly different from 0 in a random-effects group analysis.

STATISTICAL SIGNIFICANCE. Calculation of significance values in
the activation maps was based on the individual voxel significance
and on the minimum cluster size (Forman et al. 1995). The probability
of a false positive was determined from the frequency count of cluster
sizes within the entire brain using a Monte Carlo simulation. To
achieve a corrected threshold of P � 0.05, a per-voxel threshold of
P � 0.001 and a cluster size of 21 functional voxels were used.
However, an almost identical activation maps was obtained when a
much smaller cluster size (6 functional voxels) was used with the
exception of an additional cluster identified in the right amygdala.

Time-course analysis

The time course presented in Fig. 7 was obtained from averaging the
time course in all the voxels within the ROI. The first three time points
of each trial served as baseline for calculating the PSC. Repetitions of
each condition were averaged within subject and finally across subjects.

R E S U L T S

Behavior

On each trial, subjects chose between a variable lottery,
which changed in payoff amount and either probability or
ambiguity level, and a reference lottery (0.5 probability of
winning $5). In risky trials (those with ambiguity 	 0), the
winning probability of the variable option was precisely indi-
cated by the graphics of the stimulus (0.13, 0.25, or 0.38; Fig.
1B, right), whereas in ambiguous trials, part of the information
about probability was missing, rendering the trial probability
partially ambiguous (25, 50, or 75% occlusion; Fig. 1B, left).
Subjects made between 180 and 360 choices in one or two
scanning sessions. All subjects performed the task well only
missing on average 2 � 3 (SD) trials per session.

To model the SV that each option had to each individual
subject, we used the well-known model of Gilboa and Schmei-
dler (Gilboa and Schmeidler 1989)

Subjective Value � �p � ��A

2
�� � V � (1)

where SV is the SV, p is the objective probability, A is the
ambiguity level, V is the amount, and � and � are subject-
specific parameters for risk and ambiguity attitudes, respec-
tively, with � effectively capturing the relative values a given
subject places behaviorally on ambiguous versus risky lotteries
(for more details, see METHODS).

For a subject who is unaffected by ambiguity, � will be 0,
and the model will be reduced to a power utility function of a
lottery the winning probability of which is 0.5 in all of the
ambiguous lotteries we examined. A subject who is averse to
ambiguity will have a positive � and will behave as if the
winning probability is �0.5 and a subject who seeks ambiguity
will have a negative � and will behave as if the winning
probability is �0.5. Similarly, a subject who is risk-neutral will
have an � of 1, a risk-averse subject will have an � �1, and a
risk-seeking subject will have an � �1.

The choice data of each subject was fit to a single logistic
function of the form

PV �
1

1 � e��SVF�SVV� (2)

where Pv is the probability that the subject chose the variable
lottery, SVF and SVV are the SVs of the fixed and variable
options, respectively, and � is the slope of the logistic function,
or equivalently a noise parameter.

This function characterized well the behavior of all but one
subject (median: R2 	 0.67, range: 0.37–0.87) and parameters
estimated by the function were stable across sessions (Supple-
mentary Fig. S1). Most subjects exhibited both risk and ambi-
guity aversion (as reported previously in the literature), and
they varied widely in the degree of these aversions (mean �:
session 1, 0.6 � 0.2; session 2, 0.7 � 0.3; range, 0.27–1.20;
mean �: session 1, 0.7 � 0.2; session 2, 0.6 � 0.3; range,
�0.01–1.03). Figure 2 presents the choice curves of three
subjects. Subject 1 was strongly averse to risk (� 	 0.49) and
extremely averse to ambiguity (� 	 0.93). Note that a � of 1
indicates a subject who behaves as if the entire probability
indicator hidden behind the gray bar in the display ranges
against the possibility of them winning the lottery. In other
words, they behave as if the winning probability is the worst
possible probability commensurate with the display (see Mac-
cheroni et al. 2006 for a mathematical treatment of this belief).
Because the objective probabilities in the risky (unambiguous)
lotteries we examined were specifically chosen to be equal to
the worst possible probabilities in the ambiguous displays, the
choice curves under ambiguity for such an extremely ambigu-
ity-averse subject should be identical to her choice curves
under risk. Indeed, subject 1’s choice curves under ambiguity
closely resemble her choice curves under risk. For example, in
the highest ambiguity condition (75%), this subject chose the
reference when the ambiguous option offered as much as $34.
Because the objective winning probability in all of the ambig-
uous conditions was 0.5, just like the winning probability of the
reference lottery, this subject has effectively preferred (in a
normative sense) a 0.5 chance of winning $5 over a 0.5 chance
of winning $34.

Subject 2 had a similar degree of aversion to risk (� 	 0.50).
However, this subject was less averse to ambiguity (� 	 0.67),
which can be seen from the fact that her ambiguity curves are
closer to each other when compared with the ambiguity curves
of subject 1. For a perfectly rational decision-maker (in the
normative sense), � will be 0, and she will behave according to
the objective probability, which is 0.5 for all ambiguity levels.
For the lotteries we examined, such a chooser would show
choice curves for ambiguous lotteries that were all completely
overlapping (regardless of her degree of risk aversion) because
the true probability of winning is the same in all three condi-
tions. Subject 3 was less risk averse compared with the first two
subjects, relying much more on the EV of the lotteries to guide
her choices (� 	 0.87) but was strongly averse to ambiguity
(� 	 0.82).

These few examples suggest that subjects’ attitudes toward
risk and ambiguity are independent of each other. Indeed
looking at the population we did not find a significant corre-
lation between the levels of risk and ambiguity aversion across
subjects (R2 	 0.052, P 	 0.2, Fig. 3) in our admittedly small
sample, similar to previous studies (e.g., Hogarth and Einhorn
1990), but it should be noted that an analysis of a much larger
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sample does suggest a weak behavioral correlation between
risk and ambiguity attitudes (Bossaerts et al. 2009).

Finally, note that by choosing a particular model to represent
the relative values of risky and ambiguous lotteries, we did not
mean to make any claims at the mechanistic level. What we
were looking for was a compact representation of the behav-
ioral data that we could use for the neural analysis. Any of the
numerous models that have been suggested for the SV of
ambiguous options (Camerer and Weber 1992) could have

been used, as long as the selected function predicted the data
well. To demonstrate this point, we also fit the data using a
model in which the effect of ambiguity on the subjective
probability is exponential rather than linear (Hsu et al. 2005)

SV � p�1��A� � V � (3)

and obtained almost identical fits (Supplementary Fig. S2). Our
results were thus robust to SV model choice.

fMRI

The parameters obtained from the behavioral fit were used to
infer the SV that each combination of amount, probability, and
ambiguity level had for each individual subject as specified by
the behaviorally derived equation shown in the preceding text.
This measure of SV served as a common currency for value in
different trials such that we could now directly compare the
neural coding of value under conditions of both risk and
ambiguity to assess the independence of the neural substrates
for risk and ambiguity encoding.

The SVs inferred from behavior were thus used to construct
two separate predictors, SV of ambiguous trials and SV of
risky trials. Both predictors were included in a single GLM and
were used to search for brain areas the activity of which was
correlated with SV under ambiguity and for areas the activity
of which was correlated with SV under risk (Fig. 4). Significant
correlation with SV under ambiguity (random effects group
analysis, n 	 20, P � 0.001 per voxel, P � 0.05 corrected for

FIG. 2. Single subject choice behavior. The graphs present
the proportion of trials in which each subject chose the variable
option over the reference, as a function of the offered amount,
in risky (left) and ambiguous (right) trials, in 1 session of
experiment 1. Different curves are for different risk or ambigu-
ity levels. �, risk preference parameter; �, ambiguity aversion
parameter; r2, McFadden’s pseudo R2, a measure of the good-
ness of fit of the behavioral model, equivalent to the portion of
the variance that is explained by the model; n, number of trials
in which response was made (of a total of 180).

FIG. 3. Population risk and ambiguity attitudes. Scatter plot of risk aversion
(1-�, x axis) and ambiguity aversion (�, y axis) in session 1 (19 subjects) and
session 2 (15 subjects) of experiment 1. Only slight, nonsignificant, correlation
was observed between the 2 measures.
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cluster size) was found in the caudate, extending to the ventral
striatum, the anterior cingulate extending to the medial pre-
frontal cortex (MPFC), the posterior cingulate cortex (PCC),
left amygdala and anterior superior temporal sulcus (STS) (Fig.
4, top, and Table 1). No significant correlation with SV under
risk was observed at the same statistical threshold. However,
reducing the threshold (P � 0.01 per voxel) revealed signifi-
cant correlation in similar regions of the striatum and the
MPFC at the same cluster size (Fig. 4, bottom, and Table 1).
Correlation was not observed in caudate, the PCC, the STS, or
the amygdala even at the more liberal threshold.

This initial finding raises the possibility that areas of the
caudate, the PCC, the STS or the left amygdala might be
uniquely activated under conditions of ambiguity but not under
conditions of risk. To test this hypothesis, we inspected the
beta coefficients of the two predictors (the strength of the
correlations between the fMRI response and the risky and
ambiguous SVs) averaged across ROIs in these areas. To have
unbiased estimates of the locations of these ROIs, we used the
first scanning session performed on each subject to localize the
areas that were correlated with SV under ambiguity and then
examined the activity of these areas for correlations with both

risky and ambiguous SV in the second session (Fig. 5A). If one
or more of these areas uniquely encodes the effects of ambi-
guity on SV, then this analysis should reveal a statistically
significant difference between the ambiguous and risky trials.
Alternatively, if an area encodes information about SV under
both risky and ambiguous conditions and shows no significant
difference between risky and ambiguous trials, then we cannot
conclude we have identified an ambiguity-specific activation
from the fact that a whole-brain regression yielded higher
correlations under one condition than under another. This
approach thus enables us to both cross-validate the correlation
with SV under ambiguity and to ask whether the same areas
that provide information about SV under ambiguity also pro-
vide information about SV under risk. Using only the first scan
to define ROIs, we still obtained significant activations in each
area of interest at the same thresholds used to visualize these
areas with the entire dataset as described in the preceding text.

When we performed this analysis, we found that the corre-
lation with SV under ambiguity in the second session was
statistically significant in the MPFC, the striatum, the PCC, and
the left amygdala (P � 0.05, 1-tailed paired t-test, n 	 15) but
not in the STS (P 	 0.2). Importantly, activity in the MPFC,

FIG. 4. Subjective value (SV) under risk and ambiguity. Random-effects group analysis showing areas that are correlated with SV under ambiguity (top) and
under risk (bottom) in experiment 1. The functional maps are superimposed on a mean normalized anatomical image. MPFC, medial prefrontal cortex; PCC,
posterior parietal cortex; L, left; R, right.
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the striatum, and left amygdala was also correlated with SV
under risk (P � 0.05). A trend in the same direction was found
in the PCC but did not reach significance (P 	 0.09). Finally,
we found no significant differences between risky and ambig-
uous conditions in any of these areas (P 	 0.2).

For completeness, we also examined ROIs defined by the
SV of risky trials for a discrepancy between risky and ambig-
uous trials. In a similar manner, we thus used the first session
to localize areas the activity of which was correlated with SV
under risk and examined their activation as a function of risky
and ambiguous SV in the second session. Using the first
session to define ROIs, we obtained significant clusters of risky
SV-related activation in the MPFC and the striatum. We found

that activation in both of these areas was also significantly
correlated with SV under both risk and ambiguity in the second
session (P � 0.05), and we found no statistically significant
difference between activations to risk and ambiguity in either
of these areas (P 	 0.2).

Thus all of the areas in which the BOLD signal provided
reliable information about SV under risk also provided reliable
information about SV under ambiguity, and all but one of the
areas that provided reliable information about SV under am-
biguity also provided information about SV under risk. How-
ever, although the strength of the correlation between activity
in these areas and SV under risk was similar to the strength of
the correlation under ambiguity, the significance of the activa-
tion maps was lower. This is actually not surprising: bear in
mind that for most subjects, � was �1, such that the overall SV
of the risky choice set was lower than that of the ambiguous
choice set, which might have led to overall lower activation
levels for risk. To verify that this is indeed the case, we
performed a second experiment in which we concentrated on
the risky condition and increased the range of possible proba-
bilities (0.2, 0.4, 0.6, or 0.8) and amounts (11, 12, 15, 25, 40,
100, 170, or $250) we examined, such that the EVs (and thus
also the SVs) of the lotteries were much higher than in the
original experiment. On each trial, subjects chose between one
combination of amount and probability and a sure bet of $10.
The behavior of each subject was fit using Eq. 2, where SVs
were estimated using Eq. 1 with A 	 0 (no ambiguity). As in
experiment 1, � varied substantially across subjects (mean,
0.6 � 0.3; range, 0.17–1.10). Using the fit parameters, we
again inferred the SV that each trial had for each subject and
constructed a predictor to search for areas that were correlated
with SV. As expected, the results were much more significant
now: using the same threshold that was used for ambiguous
trials in the original experiment, with a smaller number of
subjects, we now obtained significant correlation in regions of
the MPFC, the striatum, and the PCC (random effects analysis,
n � 11, P � 0.001 uncorrected, P � 0.05 corrected for cluster
size). Reducing the cluster size slightly revealed an additional,
more ventral, cluster in MPFC (Fig. 6). Reducing the threshold
slightly also revealed correlation in left amygdala (Fig. 6, P �
0.005, uncorrected).

The broader dynamic range of SVs in experiment 2 also
reduced the correlation between SV and its principal compo-
nents (amount and probability), thus allowing us to compare
the contribution of each component to the observed activity.
We therefore constructed two additional models for our fMRI

TABLE 1. Talairach coordinates of regions the activity of which is correlated with SV

Contrast Region

Coordinates

Volume, mm3 t Px y z

SV under ambiguity Striatum 0 11 8 559 4.76 �0.0005
MPFC 1 40 13 7208 5.67 �0.00005
PCC �6 �51 14 7723 6.16 �0.00001
Left amygdala �18 �5 �10 839 5.62 �0.00005
STS 54 �5 �9 826 4.61 �0.0005

SV under risk Striatum �1 10 6 817 3.88 �0.005
MPFC �4 48 17 5670 3.99 �0.001

Center of mass coordinates and volume of clusters the activity of which was correlated with subjective value either under ambiguity or under risk. t statistics
and corresponding P values were obtained from fitting the model to the average activity in each region of interest. SV, subjective value; MPFC, medial prefrontal
cortex; PCC, posterior cingulate cortex; STS, superior temporal sulcus.

FIG. 5. Region of interest (ROI) analysis. General linear model (GLM)
coefficients of SV under risk and under ambiguity in each ROI and across
subjects. ROIs were localized using SV under ambiguity (A) or risk (B) in the
1st session (n 	 19) and GLM coefficients were calculated for the mean
activation in the 2nd session (n 	 15). Note that the results are therefore not
statistically biased in any direction.
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analysis. In each model, the SV predictor was replaced by a
predictor of either the objective payoff amount or the (objec-
tive) probability presented on that trial. Comparing the corre-
lation maps obtained using each of these models shows that
activity in all of the ROIs was more strongly correlated with
SV than with either objective amount or probability (Supple-
mentary Fig. S3), reaching significance in the MPFC and the
PCC for SV versus probability and in bilateral striatum for SV
versus amount (P � 0.05, 1-tailed paired t-test, n 	 11).
Furthermore, using a fourth model in which the SV predictor
was replaced by an EV predictor (EV, the objective product of
amount and probability), we found that despite of the very tight
correlation between SV and EV, activity in both the right
striatum and the left amygdala was better correlated with SV
than with EV (Supplementary Fig. S4) although this difference
did not reach significance. Thus SV describes the activity in all
of the reported ROIs at least as well as each of its components
or their product.

Additionally, we note that the similar neural representation
of SV under risk and ambiguity by no means implies that there
was no difference in the neural circuitry underlying these two
types of decisions. Such difference is in fact inevitable given
that subjects were aware of the context of each trial and
exhibited different choice behavior under each condition. In-
deed higher mean activation for choice under ambiguity com-

pared with choice under risk was observed in bilateral lateral
OFC (lateral OFC; left: �42, 53, 7; right: 39, 56, 11; P � 0.05,
corrected for cluster size; Supplementary Fig. S5), a finding
compatible with previous results (Hsu et al. 2005). This sug-
gests that the lateral OFC might have a role in signaling the
level of missing information. If this is the case, we should
expect activation in this area to increase as a function of the
ambiguity level. Inspecting the time course from these ROIs
we did not find such an effect. However, when we searched
directly for correlation with the ambiguity level, we did find an
adjacent area in left OFC that exhibited higher activation levels
for higher ambiguity levels as well as for lower winning
probabilities (tal: �42, 49, 2; P � 0.05, corrected for cluster
size, Fig. 7).

Finally, we also examined the connectivity patterns between
the major structures identified in the experiment, namely the
MPFC, the striatum, and the left amygdala. Using psychophys-
iological interaction analyses (PPI) (Friston et al. 1997) with
each of these ROIs as a seed, we investigated whether the
functional connectivity between these areas and the rest of the
brain is modulated by the task (see METHODS). No such modu-
lation was observed when either the MPFC or the striatum
were used as a seed. However, using the left amygdala, we did
observe such modulation in two areas (Supplementary Fig.
S6): correlation with the left striatum was stronger under

FIG. 6. Subjective value under risk—broad range of amounts and probabilities. Random-effects group analysis showing areas the activity of which is
correlated with SV in experiment 2.

FIG. 7. Ambiguity level. Activity in a region of the left orbitofrontal cortex (OFC) was correlated with the ambiguity level across subjects (random-effects
group analysis, n 	 19, P � 0.001 uncorrected, P � 0.05 corrected for cluster size).
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ambiguity, whereas correlation with a region in the vicinity of
the junction between the IFG and the precentral sulcus was
stronger under risk. These results suggest that although the
amygdala participates in the representation of value under both
risk and ambiguity, its exact role in the processing of each type
of information may well be distinct as has been previously
hypothesized (Hsu et al. 2005).

D I S C U S S I O N

Choice behaviors under risk and under ambiguity are mark-
edly different. Here we showed that despite this difference in
behavior, SV under both risk and ambiguity is represented in a
similar manner in several brain areas. Using each individual’s
behavior, we estimated the SV that each risky and ambiguous
lottery had for that subject and searched for neural activity that
was correlated with that measure. Significant correlations were
found in the MPFC, the striatum, the PCC, and the amygdala.
Importantly, no brain area provided unique information about
SV under one condition only. Rather all the areas that con-
veyed information about SV under risk at the signal-to-noise
ratios of a 3Tesla scanner also conveyed information about SV
under ambiguity and vice versa, and no significant difference
was found between correlation with SV under risk and SV
under ambiguity in any of the areas.

Our results are compatible with previous studies that exam-
ined different aspects of the neural processing of risk and
ambiguity. Hsu and colleagues reported higher BOLD activa-
tion for risky choices compared with ambiguous ones in the
striatum (Hsu et al. 2005). Our finding of correlation to SV in
the striatum is compatible with such differential activation
because the ambiguous choice set in the Hsu and colleagues
study most likely had a lower aggregate SV than their risky
choice set as indicated by the choice behavior of their subjects.
Those authors also reported higher activation for ambiguous
choices compared with risky ones in the OFC, a finding that a
similar analysis of our dataset replicates (Supplementary Fig.
S5). Finally, the areas reported in the papers by Huettel and
colleagues (2006) and Bach and colleagues (2009) were also
found to be active in our experiment (Supplementary Fig. S7).
In the previous studies, these areas were more active for
ambiguity than for risk, and the authors therefore hypothesized
that they might have a role in the process of resolving ambi-
guity. Compatible with this hypothesis, in our design, which
did not allow subjects to resolve the ambiguous probabilities,
the level of activation was similar for risk and for ambiguity.

Our study extends the previous studies of risk and ambigu-
ity, however, in a novel way. Our results identify a stage in
neural processing at which the value of all of those different
risky and ambiguous options is represented in a unified man-
ner. This stage is composed of the MPFC, the striatum, the
PCC, and the amygdala, all of which have been previously
implicated in the representation of value in both humans and
monkeys.

In monkey, value-related neurons have been identified in
the striatum in both the caudate (Lau and Glimcher 2008)
and the putamen (Samejima et al. 2005). In humans, activity
in the striatum has been shown to rise above baseline for
unexpected rewards, drop below baseline for unexpected pun-
ishments (Delgado et al. 2000; Kuhnen and Knutson 2005),
and scale with the magnitude of both (Delgado et al. 2003).

The striatum is also active for reward and punishment predict-
ing cues, scaling with the amount (Breiter et al. 2001; Knutson
et al. 2001a, 2003), the probability (Hsu et al. 2009), and the
EV of the predicted outcome (Hsu et al. 2005; Luhmann et al.
2008; Preuschoff et al. 2006; Tobler et al. 2007; Tom et al.
2007). The subjective nature of the value representation in the
striatum was exemplified in recent studies that reported corre-
lation with marginal utility (Pine et al. 2009) as well as refer-
ence dependence of the activation (De Martino et al. 2009) and
changes in activation that corresponded to changes in post
choice estimates of future hedonic experience (Sharot et al.
2009). The striatum also responds to the anticipation of pri-
mary rewards (O’Doherty et al. 2002) and its activity is cor-
related with behavioral preferences, such as juice preferences
(O’Doherty et al. 2006), meal pleasantness ratings (Small et al.
2003), and product preferences (Knutson et al. 2007). Finally,
the ventral striatum responds to both immediate (McClure et al.
2004a, 2007) and delayed rewards, tracking the subjectively
discounted value of future rewards (Kable and Glimcher 2007).

Activation in MPFC exhibits similar properties. Like the
striatum, it is active for both receipt of reward (Knutson et al.
2001b, 2003; Kuhnen and Knutson 2005) and expected reward,
and its activity is correlated with the EV of the expected
rewards (Knutson et al. 2005) and with the subjectively dis-
counted value of future rewards (Kable and Glimcher 2007) as
well as with the actual outcome level (Luk and Wallis 2009).
Activity in the MPFC is also correlated with behavioral pref-
erences (McClure et al. 2004b), incorporating various factors
that affect each individual’s valuation of different options
(Hare et al. 2009). Recent studies reported the overlapping
representations of action and stimulus values in the MPFC
(Glascher et al. 2009) as well as an overlapping representation
of the value of different types of goods (Chib et al. 2009).
Finally, a similar picture emerges from data obtained from the
adjacent OFC. Neurons in this area have been shown to encode
the value of offered, chosen, and received goods (Padoa-
Schioppa and Assad 2006, 2008; Tremblay and Schultz 1999;
Wallis and Miller 2003), including goods of different classes
(FitzGerald et al. 2009). Activity in this areas reflects subjects’
willingness to pay for offered food items (Plassmann et al.
2007) as well as their reported experienced pleasantness (Plass-
mann et al. 2008).

Both the striatum and the MPFC receive reward-related
dopaminergic inputs from midbrain neurons that have been
shown to encode the reward prediction error (RPE) or the
difference between the received and expected reward (Bayer
and Glimcher 2005; Schultz et al. 1997) compatible with a role
for these areas in the representation of value (but see Hare et al.
2008).

The PCC is reciprocally connected to the MPFC, and both
are parts of the brain’s “default” system, which has been
hypothesized to attend to internal body and mental states
(Goldberg et al. 2006; Raichle et al. 2001). Like the MPFC and
the striatum, the PCC responds both to receipt and to antici-
pation of reward and its activity is correlated with reward size
(McCoy et al. 2003) including discounted value of future
rewards (Kable and Glimcher 2007) as well as with social
valuations (Schiller et al. 2009).

The amygdala is also reciprocally connected to the MPFC,
and in addition it projects to the ventral striatum (Sah et al.
2003). The amygdala has been shown to represent both posi-
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tive and negative values in both humans and animals. It
responds positively to reward (Elliott et al. 2003; O’Doherty et al.
2003) and to anticipation of reward (Small et al. 2008), and it
plays a role in representing the current value of a reward during
learning of stimulus-reward associations (Baxter and Murray
2002; Paton et al. 2006) and in devaluation (Gottfried et al. 2003).

To conclude, we found that areas previously implicated in
the representation of value also represent SV under risk and
ambiguity. Despite the marked difference between the condi-
tions of risk and ambiguity, at least at the fMRI resolution we
employed there were no areas that provided unique information
about SV in only one condition, suggesting a unified evaluative
system that uses a common currency to represent value under
different conditions.
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