
Trends in

TICS 2113 No. of Pages 21
Cognitive Sciences
Feature Review
Neural Computations of Threat
Ifat Levy1,* and Daniela Schiller2,*
Highlights
The response to threat comprises
multiple learning, memory, and
decision-making processes.

These processes may be disrupted in
anxiety and trauma-related disorders.

We describe five stages of processing:
experience of imminent threat; formation
of threat associations; post-association
learning; storing and updating of
these associations; and decision-making
A host of learning, memory, and decision-making processes form the individual’s
response to threat and may be disrupted in anxiety and post-trauma
psychopathology. Here we review the neural computations of threat, from the first
encounter with a dangerous situation, through learning, storing, and updating
cues that predict it, to making decisions about the optimal course of action. The
overview highlights the interconnected nature of these processes and their
reliance on shared neural and computational mechanisms. We propose an
integrative approach to the study of threat-related processes, in which specific
computations are studied across the various stages of threat experience rather
than in isolation. This approach can generate new insights about the evolution,
diagnosis, and treatment of threat-related psychopathology.
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rather than in isolation.
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Neural Computations of Threat: Learning, Memory, and Decision Making
How does the brain compute threat? When facing danger, an organism is tasked with learning
precursors of threat, remembering those precursors for extended periods and across contexts,
andmaking optimal decisions under stress. Anxiety and trauma can impact each of these cognitive
processes. Here we define threat as an organism, an object, or a situation that is likely to inflict
damage on an organism’s physical or mental wellbeing. We review the neural computations
underlying adaptive and maladaptive threat learning, memory, and decision making. Beginning
with an encounter with a threatening situation, we follow the associations born out of this event,
the elaboration of these associations, the formation and reformation of threat memories, and
how threat experience shapes decision making (Figure 1). For each phase, we describe the neural
computations performed on incoming, retrieved, or projected information, and their manifestation
in post-traumatic stress disorder (PTSD) and anxiety disorders.

The juxtaposition of the various stages of threat experience highlights the interconnected nature of
these processes, with common computations and overlapping neural regions (Figure 2 and Box 1).
At the heart of this process are computations during ambiguous situations, where uncertainty
could be reduced through information gathering, proactive anticipation of consequences, and the
retrieval and updating of relevant memories, for the purpose of making predictions and choices
more accurate. We use the term ‘computation’ in accordance with Marr’s three levels [1], whereby
the term refers to the goal of the computation and the logic by which it can be performed. We
argue that the different stages of threat experience share computational goals, and therefore the
algorithmic and implementation levels could also overlap (Box 2). This set of computations ought
to comprise the values of predictive cues, actions and outcomes, prediction error (see
Glossary) that drives learning, dynamically adjusted learning rates, and the uncertainty surrounding
these estimations. These values could be learned through various policies such as trial and error or
by learning about the structure of the environment.

Although these computations are deployed throughout the threat experience, the information
they process differs depending on the phase, be it the initial encounter, subsequent learning,
memory retrieval, or decision making. This approach generates interesting predictions about
how clusters of symptoms may organize, and proposes considerations for diagnosis and
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Glossary
Ambiguity: a type of uncertainty in
which likelihoods for potential outcomes
are not precisely known; equivalent to
estimation uncertainty.
Associability: the degree to which a
cue has previously been accompanied
by a surprising outcome. Can be used to
gate the learning rate in models of
reinforcement learning.
Avoidance learning: learning a
response to evade aversive outcomes or
the stimuli that predict them.
Consolidation: a period in which a
newly acquired memory is stabilized.
Counterconditioning: pairing a
threat-conditioned stimulus with a
rewarding outcome (or a reward cue
with an aversive outcome) to weaken a
learned association.
Destabilization: the shift of a
reactivated memory into an unstable
state, making it susceptible to change.
Extinction learning: repeated
presentations of a previously
conditioned stimulus, in the absence of
the associated outcome, result in a
temporary decline of memory
expression.
Instrumental conditioning: learning
to associate actions with aversive or
appetitive outcomes.
Loss aversion: the relative weight that
the decision maker assigns to losses
compared with gains.
Model-based computations: learning
algorithms that rely on internal models of
the environment, including action-state
transition probabilities.
Model-free computations: learning
algorithms that learn the expected value
of actions or stimuli based on sampling
and direct experience of outcomes.
Pavlovian conditioning: learning to
associate stimuli with aversive or
appetitive outcomes.
Prediction error: the difference
between the obtained and expected
outcomes, used to drive learning in
reinforcement learning models.
Predictive value: in the context of
models of aversive learning, the degree
of threat predicted by a cue.
Reactivation: exposure to memory
reminders, which may lead to
destabilization of the neural
representation of the memory.
Reconsolidation: the process of
restabilization of a destabilized memory,
allowing to update it with new
information. Disruption of the
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Figure 1. The Stages of Threat Experience. Experiencing a life-threatening event, in this case an aversive emotional
memory of a car explosion (A), may result in associative learning (B) where a neutral stimulus (the blue car) becomes
threatening as it predicts danger (explosion). The learned association then competes with or influences new associations (C).
For example, generalization of the association to other stimuli [(C), top] or extinction learning [(C), bottom], where repeated
exposure to blue cars diminishes the threat response, may occur. A more permanent way of diminishing the learned threat
response is by modifying the original association through reconsolidation updating (D). A reminder cue may trigger the
memory and destabilize it, requiring restabilization (reconsolidation) to return it to a stable state. In the course of
destabilization, updates may occur in several ways, such as extinction (top), counterconditioning (middle; car associated with
a positive outcome such as a wedding), or sensorimotor interference (depicted here as a Tetris game). The new information
these processes provide is incorporated into the memory (extinction, counterconditioning) or depletes neural resources of
reconsolidation (sensorimotor interference). Finally, threat learning interacts with processes of decision making and attitudes
toward loss, risk, and ambiguity (E). For example, when facing a choice between riding in a car or on a bicycle, threat-related
processes may bias the choice toward the less threatening option. The depiction of the stages of threat experience (A–E)
does not mean to indicate any sequential order or independence. The stages are intertwined throughout the threat experience.
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treatment, as the following sections elaborate. This overview suggests that rather than treating
anxiety and PTSD as disorders of multiple distinct processes – heightened emotional reactivity,
aberrant learning, impaired inhibition, overgeneralization, hyperavoidance, maladaptive memories,
or biased decision making – a unifying approach may prove more efficient. From a computational
standpoint, anxiety and PTSD are disorders of prediction – the estimation of future threats.

The Stages of Threat Experience
The Experience of Imminent Threat
Encountering a life-threatening situation engages neural computations that consider information
about the environment and the source of threat. These computations design defensive policies
and select adaptive responses for execution. The threat imminence continuum model [2],
which maps defensive behaviors onto levels of threat imminence (how far away a predator is in
time and space), provides a platform for prey–predator relations to assess the neural circuits
and computations for survival [3,4]. In the first, ‘safe’ stage, there is no threat, but an encounter
with a predator may occur in the distant future. Individuals may experience occasional anxiety
and flash forward toward possible future threats. Cognitive control and emotion regulation
could keep this process in check. Next is the ‘pre-encounter threat’ – the predator is not present,
but may surface at any moment. Individuals may experience anticipatory anxiety and exhibit
vigilance and preparatory behaviors. In the more dangerous ‘post-encounter threat’ the prey,
not yet detected, observes the predator. This step generates encounter anxiety, involving close
2 Trends in Cognitive Sciences, Month 2020, Vol. xx, No. xx
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Figure 2. Neural Basis of Threat. Brain schema depicting working hypotheses, based on extant evidence, for brain
regions and neural circuits involved in threat reactivity, learning, and decision making. Rather than different regions being
uniquely engaged in separate processes, review of the evidence suggests that most regions are engaged in more than
one function, and that the concepts of learning, memory, and decision making are difficult to isolate behaviorally and
computationally. For example, regions typically involved in physiological reactivity, such as the periaqueductal gray (PAG),
also contribute to the formation of Pavlovian associations by providing a teaching signal to the amygdala (AMG). Regions
typically assigned to associative learning, such as the amygdala, hippocampus (Hip.), and ventral striatum (VS), are also
involved in decision making. Regions often assumed to have a role in decision making (valuation and choice), such as the
orbitofrontal cortex (OFC), ventromedial prefrontal cortex (vmPFC), dorsal anterior cingulate cortex (dACC), the posterior
parietal cortex (PPC), and the lateral PFC, are also involved in learning. The insula (Ins.) has been implicated in decision
making, learning, and reactivity. Together, these regions converge into a global network that conducts a similar set of
computations across various phases of experience. The separate investigation of specific types of learning, memory, and
decision-making processes is thus not conducive to a comprehensive understanding of a unified global network. A refined
approach would first define the computational problem – for example, how the brain predicts outcomes under uncertainty
in a volatile environment given certain stimuli or actions – and then examine how each region in this global network
contributes to these computations (e.g., informing value, tracking associability, computing prediction error). This process
should then be iterated across the various stages of threat experience (e.g., initial encounter, memory retrieval, decisionmak-
ing), aswell as other domains such as reward. BNST, bed nucleus of stria terminalis; Hyp., hypothalamus; dmPFC, dorsomedial
PFC; dlPFC, dorsolateral PFC; vlPFC, ventrolateral PFC; PCC, posterior cingulate cortex; SN, substantia nigra; VTA, ventral teg-
mental area.

reconsolidation process may result in
memory impairment.
Risk: a type of uncertainty in which
likelihoods for potential outcomes are
fully known. In the context of learning,
this is also known as expected or
irreducible uncertainty.
Subjective value: the utility of an
option to the decision maker, integrating
over all of the option’s properties,
including potential outcomes and their
likelihoods, as subjectively perceived by
the decision maker.
Threat imminence continuum:
mapping of defensive behaviors into
stages of threat, ranging from a ‘safe’
stage (no threat) to the most extreme
‘circa-strike’ stage (an attack occurs).
Unexpected uncertainty: a surprising
change in the probabilistic structure of
the environment.
Volatility: frequency of changes in the
probabilistic structure of the
environment. The learning rate should be
higher in volatile, compared with stable,
environments.
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inspection and anticipation of the predator’smoves, strategic freezing to avoid detection and gather
information, and avoidance estimation. Finally, the prey is under most extreme danger during the
‘circa-strike’ phase, when the predator is attacking. In that attack mode, the predator could be
distant enough to allow a feeling of fear and rapid thoughts examining the situation and assessing
escape routes. Fight or flight ensues as the predator gets closer yet without contact. The final
point of contact provokes hard-wired, fast, often poorly executed reactions of freezing and panic [5].

A hierarchical neuroanatomical organization traces the threat imminence continuum. As the
predator approaches, brain activity shifts from the prefrontal cortex (PFC) to the midbrain. Two
parallel paths support defensive approach and avoidance, originating from PFC areas through
cingulate cortex areas, to the hippocampus, amygdala, and hypothalamus, terminating on the
midbrain periaqueductal gray (PAG) and dorsal raphe nucleus [3]. Converging neuroanatomical
and functional evidence across species, including rodents, non-human primates and humans,
supports this organizational scheme, attributing feelings of anxiety and fear and cognitive regulation
to higher-order cortical areas, and freezing, escaping, and panic to the amygdala, hypothalamus,
and PAG, respectively [3,6–8].

A proximal threat engages rapid, reflexive, and narrowly targeted actions, and therefore has
limited computational resources. Decisions during this phase are likely to rely on model-free
Trends in Cognitive Sciences, Month 2020, Vol. xx, No. xx 3
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computations, sustaining the repetition of previously reinforced actions. The more distal points
of encounter allow time to assess the environment and consider alternative courses of action. It is
plausible that, in addition to model-free responses, such threats initiate model-based
Box 1. The Neural Mechanisms of Threat Detection and Modification

Innate and learned threat processes are distinguishable in the brain. The neural circuits of innate threats can be described
by three main functional units: a detection unit subserved by sensory systems that gather sensory information signaling the
presence of threat; an integration unit where sensory information converges, directing the recruitment of downstream
structures that produce the adaptive response, with the integration occurring at the level of the amygdala and hypothalamus;
and an output unit comprising brainstem structures, including the PAG, directly producing adaptive physiological and
behavioral responses to the threatening stimuli [7,168]. The experience of innate threat instructs a learning process that forms
a memory of the threatening event.

The neural mechanisms of threat acquisition, extinction, and other forms of threat modulation (Figure I), are centered
around the routing of information to and from the amygdala and within amygdala nuclei [169,170]. During threat
conditioning, sensory inputs arrive at the amygdala through either a thalamo-cortico-amygdala pathway or a direct
thalamo-amygdala pathway. Those sensory inputs, signaling the neutral (to be conditioned) stimulus and the aversive
outcome, converge onto neurons in the lateral amygdala (LA). The stimulus–outcome convergence induces long-term
potentiation of stimulus input synapses, such that when the stimulus later appears alone, its input will sufficiently drive
LA outputs, triggering the threat response. Within the amygdala, the LA relays information directly to the central
nucleus (CE) or via the basal nucleus. There is also evidence that the basal/lateral nuclei (BLA) and CE process
information in parallel and not only serially [171]. The CE is the major output structure of the amygdala. CE projections
to the hypothalamus, PAG, and other regions mediate the behavioral and physiological threat response (freezing,
change in heart rate and blood pressure, and release of stress hormones) [23,170,172–174].

LA neurons’ aversive responses correspond to prediction error encoding, because these cells respond strongly to
unexpected aversive outcomes but reduce their firing when the outcomes are predicted by conditioned stimuli. The
prediction error signal is created by an amygdala–PAG feedback circuit. The conditioned stimulus recruits the CE to
activate a specific population of PAG neurons, which in turn inhibit aversive signaling before it reaches the LA, thereby
resetting threat learning levels and controlling conditioned threat behaviors [29,175–177].

Along the borders of the BLA and CeA lie islands of inhibitory (GABAergic) neurons. These are the intercalated cell masses (ITCs)
that exert inhibitory control over the amygdala as part of an ‘off switch’ system. The major amygdala nuclei further divide into
internal partitions. For example, the CE divides into lateral and medial parcels. The lateral part of the CE continuously inhibits
the medial part, keeping the amygdala’s output under control. The BLA overturns this effect by projecting to the lateral CE via
ITCs. The medial CE, consequently, now free of inhibition, enables the threat response [178,179]. In addition to the threat
responsive population of ‘on’ cells in the amygdala, there are ‘off’ cells that are responsive to stimuli that signal extinction, as well
as BLA to nucleus accumbens projecting neurons that signal reward [127,180,181].

Amygdala threat responses are short-lived: they last only a few hundred milliseconds and therefore cannot be responsible
for the stimulus-evoked sustained threat response, which typically lasts at least a few seconds. In rodents, the dorsal part
of the medial PFC, the prelimbic PFC, is the region that maintains and prolongs threat responses. The adjacent infralimbic
PFCmediates the diminution of the threat response seen following extinction [182–185]. The putative human homologs of
these regions are the dACC and the vmPFC, respectively [186]. Retrieval of extinction memory involves potentiated
inhibitory circuits in the BLA and increasedmedial PFC output to the amygdala [178,180,187]. Inputs from the hippocampus,
insula, and thalamus, among other regions, further modulate the amygdala’s threat response [182,183,188].

Regions of the medial PFC arbitrate between freezing and avoidance responses. The prelimbic PFC gates the impact
of BLA inputs to the ventral striatum during avoidance [49]. BLA projections to the ventral striatum and prelimbic PFC
projections to the BLA both facilitate avoidance, whereas prelimbic PFC projections to the ventral striatum diminish
avoidance [189]. The infralimbic PFC suppresses freezing mediated by the CeA [190]. The retrieval of avoidance
memory relies on prelimbic PFC projections to the BLA, and avoidance extinction relies on projections from the
infralimbic PFC to the BLA and ventral striatum [191].

Consistent with these findings, research in humans showed that the degree to which the amygdala and striatum are
synchronized with regions in the medial PFC during avoidance learning predicted avoidance success [51]. Striatal
activation differentiated between participants that exerted control over conditioned stimuli versus those that did not,
and corresponded to diminished return of threat responses [50,52,192]. Theoretical formulations suggest that individuals’
estimates of agency based on past experience with controllable and uncontrollable outcomes adaptively calibrate their
proactive or reactive behavioral strategies [193].
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Figure I. The Neurocircuitry of Threat Learning and Modification. A schematic representation of the inputs into the
amygdala, information transfer within the amygdala, and amygdala outputs, and their supposed functional role in threat
learning and regulation. The dACC and the vmPFC represent the putative human homologs of the rodent PL and IL,
respectively. B, basal amygdala; LA, lateral amygdala; CE, central amygdala; dACC, dorsal anterior cingulate cortex; vmPFC,
ventromedial prefrontal cortex; PL, prelimbic prefrontal cortex; IL, infralimbic prefrontal cortex; CS, conditioned stimulus; US,
unconditioned stimulus.
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computations – the prospective anticipation of action consequences using a constructed map
or a model. This computational policy favors accuracy and strategic planning [9,10] and allows
‘offline’ testing of potential courses of action using mental simulations. Computational methods
such as Dyna [11] aim to identify the optimal policy for a particular situation by simulating actions
and their consequences within an internal model of the environment. Themental simulations provide
data to train the model and improve predictions in the absence of actual threat experiences.

Peoplewho experienced a traumatic event andwent on to develop post-traumatic stress, and people
with anxiety disorders (Box 2), often exhibit some of the same behaviors along the threat imminence
continuum, albeit in an excessive manner and inappropriate contexts. For example, according to
the DSM-5 [12], among the criteria for a PTSD diagnosis are hypervigilance and avoidance as in
the pre-encounter anticipatory anxiety phase. Anxiety disorders are accompanied by frequent
intermittent anxiety involving rumination, worry, and over-strategizing. This suggests that PTSD and
anxiety disorders may involve deficient computations of spatiotemporal threat, particularly influencing
the reliance on model-based planning during anticipatory and encounter anxiety. Consistent with this
idea, high-trait anxiety affects escape decisions from a virtual predator, but only when the threat is
distal rather than imminent [13]. Other studies, in the domain of reward learning, demonstrate the
vulnerability of model-based computations to stress [14] particularly in depression [15], and to lifetime
stress [16], as well as to self-reported intrusive thought [17], a symptom of generalized anxiety and
PTSD. Additional research is required to examine how greater reliance on one system versus another
relates to vulnerability or resilience to traumatic stress, andwhich clusters of symptoms correspond to
these underlying behavioral policies.

Beyond direct experience, individuals can also be impacted by secondhand, vicarious experience,
by witnessing the experience of others or through verbal instructions (Box 2). This form of social
Trends in Cognitive Sciences, Month 2020, Vol. xx, No. xx 5



Box 2. PTSD and Anxiety

PTSD was first introduced as a diagnosis in 1980, in the third edition of the American Psychiatric Association (APA)’s
Diagnostic and Statistical Manual of Mental Disorders (DSM). The initial definition attracted controversy and was revised
over the years [194]. The most substantial conceptual change occurred in the latest DSM-5, with the removal of PTSD
from the category of anxiety disorders [195]. Instead, the disorder was placed in a new diagnostic category named
‘Trauma and Stressor-related Disorders’. This new categorization is unique among psychiatric disorders: while all other
DSM diagnostic categories are conceptually grouped by symptom characteristics, this is the only category that requires
an exposure to a stressful event as a precondition.

Accordingly, most fundamental to the nosology of PTSD is criterion A: exposure to a traumatic event. The definition of
trauma includes actual or threatened death, serious injury, or sexual violence [12]. This specific definition indicates that
not all stressful events (e.g., psychological stressors like losing a job or a divorce) qualify as trauma. Exposure to trauma,
according to criterion A, comprises not only direct personal exposure, but also witnessing trauma to others or indirectly
experiencing trauma through the traumatic experience of a close individual. The assessment of PTSD symptoms is valid
only if criterion A is met. The symptoms must begin or worsen following the traumatic event, without assuming any causal
or etiological inference. The symptom groups are: intrusions, avoidance, negative alterations in cognition and mood, and
alterations in arousal and reactivity. This new organization emphasizes avoidance, now making it a requirement in order to
meet the diagnostic criteria for PTSD.

One reason for the separation of PTSD from anxiety is the ample evidence that PTSD involves emotions outside the range
of fear and anxiety (e.g., anger, guilt, shame). To be diagnosed with an anxiety disorder, a person must experience fear or
anxiety that are out of proportion and impair normal function. Fear refers to an emotional response to an immediate threat,
often triggering a fight or flight reaction. Anxiety is more diffused, referring to the anticipation of a future threat, typically
manifested in muscle tension and avoidance behaviors.

The neural correlates of PTSD and anxiety largely involve structural and functional aberrations in the amygdala, PFC, and
hippocampus. PTSD patients exhibit exaggerated amygdala reactions to negative and trauma-related stimuli,
hypoactivation of the vmPFC, and impaired hippocampus-dependent context learning, as well as neuroendocrine
dysregulation [196]. Animal models differentiate neural circuits underlying the response to immediate present threat versus
uncertain threats (i.e., anxiety). Uncertain threats (e.g., unpredictable shocks) engage the bed nucleus of stria terminalis
(BNST), which mediates the transfer of information between the amygdala and the ventral striatum and modulates
defensive reactions [197].

The first line of defense against PTSD is prolonged exposure therapy [198,199] – the repeated exposure to trauma-related
cues – leading to desensitization (akin to laboratory procedures of extinction). The treatment is ineffective in about 20–30% of
patients, and approximately 20% fail to complete the full course of treatment. There is little empirical evidence to support
pharmacological treatments for PTSD [200,201], which are typically selective serotonin reuptake inhibitors. The development
of novel effective treatments is desperately needed. Possible directions could consider drug-assisted behavioral therapy
[202], reconsolidation-based pharmacological and behavioral treatments [203–205], a synergistic approach combining
multiple behavioral and neural processes [75,86] and the temporal progression of treatment [83].
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behavior capitalizes on existing neural mechanisms of direct learning, in addition to processing of
social information, and is evident across species [18–20]. Socially formed associations can also
shape subsequent decision making the same way that direct learning does [21].

Experiencing imminent threat may result in a cascade of: (i) the formation of threat associations;
(ii) post-association learning; (iii) storing and updating of these associations; and (iv) decision
making under threat (Figure 1). It is possible that the particular processes occurring in the first
stage would impact the four following stages. For example, a less-imminent threat encounter
might result in a weaker memory that is easier to extinguish; a highly stressful encounter with
more imminent threat could produce amemory that is reconsolidation resistant; and the degree
of uncertainty during initial encounters might shape the flexible update of initial learning, etc. The
next sections examine the cascade of processes following the initial threat learning.

Backpropagation of Threat
The computational processes during imminent threat focus on the immediate needs and current
environment of prey. However, they also rely on prior learning, such as previously acquired
6 Trends in Cognitive Sciences, Month 2020, Vol. xx, No. xx
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associations, reinforced actions, and learned models, called upon in the service of the moment.
The merging of past and present experience yields new associations and updated models. In the
simplest form, predation becomes associated with neutral stimuli in the environment. The threat
of the predator backpropagates to the stimuli that predict it, a process known as Pavlovian
conditioning [22,23].

Various learning models are used in this research, aiming to capture various types of information.
Theories of associative learning, such as the Rescorla–Wagner (RW) and reinforcement learning
models, envision that learning is driven by surprise, formalized as prediction error – the
difference between the outcome expected and the outcome received. The predictive value of
the stimulus – the level of threat that it predicts – changes proportionally with the magnitude of the
error at a rate that is not in itself influenced by the learning [9,24]. Overgeneralization of the learning
to cues that were not associated with threat [25] may be a hallmark of anxiety disorders [26].

The temporal difference model extends the RW model, allowing predictions of accumulated
discounted future outcomes rather than the immediate only [9]. Other theories, such as the
Pearce–Hall model, focus on the predictive efficiency of the cue. Here, to learn cue–reinforcer
associations, individuals track a quantity termed associability, which reflects the degree to
which a cue has previously been accompanied by surprise (positive or negative prediction
error). The associability of a cue gates the amount of future learning about that cue, depending
on whether it has previously been a poor or a reliable predictor of an outcome. In this way,
associability accelerates learning to cues whose predictions are poor and decelerates it when
predictions become reliable [27].

Several brain regions play a role in associative learning (Figure 2 and Box 1). There is evidence for
the encoding of aversive prediction errors in activation patterns in the amygdala [28–31] and the
striatum [32–34]. The striatal activation may result from dopaminergic inputs from the ventral
tegmental area (VTA) [35,36], although the evidence for a striatal role in aversive prediction
error may not be as strong as the evidence for its role in reward prediction error [37,38]. Both
amygdala and striatum have been implicated in tracking of associability [33,34,39,40].

An augmented ‘hybrid’ RWmodel controls learning rates dynamically, based on the Pearce–Hall
learning rule. In humans undergoing threat conditioning, measured by skin conductance
response (a measure of autonomic nervous system activity), the hybrid model better captured
cue-specific associabilities, over and above value expectations [40–42]. A study in combat
veterans used the hybrid model to estimate the influence of prediction errors on cue-specific
associabilities in each learning trial [34]. This subject-specific parameter positively corresponded
to PTSD symptoms [measured by the Clinician Administered PTSD Scale (CAPS)]. Thus, by
assigning more weight to prediction errors, the more trauma-affected individuals exaggerated
their adjustment to cues that did not predict what they had expected [34,43]. Amygdala and
striatal tracking of cue value throughout learning negatively corresponded to CAPS (less-faithful
neural representation of value related to worse diagnosis). Better striatum tracking of associability
corresponded with lower symptom severity, and partially mediated the positive relationship
between prediction error weight and CAPS [34].

In parallel with the passive formation of cue–outcome Pavlovian associations, individuals can
readily associate their actions with outcomes, a process termed instrumental (or operant)
conditioning [44–46]. A classic example of instrumental conditioning in the context of threat
is avoidance learning (Box 1), where an animal learns to prevent or minimize contact with an
aversive outcome (e.g., electric shocks) or the stimuli that predict it [47]. Animal studies identify
Trends in Cognitive Sciences, Month 2020, Vol. xx, No. xx 7
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at least two opposing pathways subserving active avoidance learning: a lateral amygdala – basal
amygdala – nucleus accumbens pathway required for active avoidance; and a competing lateral
amygdala – central amygdala – PAG pathway mediating freezing to conditioned stimuli. The
infralimbic and prelimbic PFC subregions serve as the arbitrators, mediating the transition from
reaction to action by suppressing freezing and facilitating avoidance [48,49] (Box 1). Human
studies are consistent with these findings, demonstrating the involvement of amygdala and
striatum and their interactions with the medial PFC [50–52].

Avoidance by itself is an adaptive response to danger, but unwarranted and excessive avoidance
is a hallmark of PTSD and anxiety disorders [48,53]. Avoidance symptoms can be subdivided into
passive and active. Passive avoidance is the lack of action (e.g., strategic freezing) whereas active
avoidance involves emitting an action that circumvents the aversive outcome. The fact that active
avoidance is a form of learning driven by the absence of the aversive reinforcer poses a challenge
for learning theories. The psychologists O.H. Mowrer and Neal Miller provided a conceptual
framework for active avoidance as a two-factor learning process, where threat is first acquired
through Pavlovian conditioning, and then actions that reduce the conditioned threat are
reinforced through instrumental conditioning [47,54,55]. Reinforcers of avoidance behavior
include negative reinforcement by the removal of threat-associated cues and positive reinforcement
by cues associated with safety [48,49].

In the context of both Pavlovian and instrumental conditioning, the models we have surveyed
explain predictions of expected threat, but ignore uncertainty about these predictions (Box 3).
Instead of point estimates, Bayesian learning models include estimates of prediction uncertainty
that rule a dynamic learning rate [42,56–58]. In stable environments, experiences from the distant
past are informative in predicting the future, and transient changes should be largely ignored.
Natural environments, however, are seldom stable; rather, unexpected uncertainty (Box 3)
may arise, when the probabilistic structure of the environment changes abruptly [59–61]. When
action–outcome contingencies change (e.g., the outcome probability substantially drops), only
Box 3. Types of Uncertainty

Learning and decisions about threats involve multiple forms of uncertainty. The learning literature distinguishes between
expected and unexpected uncertainty [206].

Expected uncertainty – also known as irreducible uncertainty [60,207] – arises from the probabilistic nature of outcomes in
a familiar environment. In the laboratory, expected uncertainty occurs when outcome probabilities are fixed and well
learned (e.g., when each cue presentation is associated with an 80% chance of an electric shock). While the outcomes
themselves are uncertain (shock or no shock), their variance is expected, and, assuming a stable environment, these
outcomes do not provide useful information and should not drive learning.

Before learning is well established, the lack of experience gives rise to estimation uncertainty [60,208] – uncertainty about
the probabilistic structure of the environment. This type of uncertainty can be reducedwith additional evidence, and signals
how much learning is required. In the economics literature, irreducible uncertainty and estimation uncertainty are termed
‘risk’ and ‘ambiguity’, respectively (Box 4).

Unexpected uncertainty arises when expectations about the statistical structure of the environment are violated (e.g., if the
shock probability abruptly drops to 20%). Determining that the uncertainty is unexpected, rather than part of the stochastic
nature of the stable environment, is challenging [59]. Expected uncertainty can provide a baseline for the level of
uncertainty against which surprising events should be compared [61], considering the learner’s belief about the world
[209]. Changes in the probabilistic structure of the environment – for example, in a volatile environment – should lead to
an increased learning rate, such that predictions rely more on recent events. Normative statistical models, such as
Bayesian models, and their approximations, provide accurate predictions for behavior [56,60,62,65] but include complex
computations, and it is unclear how these computations are implemented by the brain [61]. One model, synaptic
metaplasticity (the ability to change synaptic states without measurable changes in synaptic efficacy), was proposed as
a biologically plausible mechanism for adjustment of learning rates based on unexpected uncertainty [210].
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recent experiences should inform learning, to allow quick adaptation to the changing conditions.
Human participants are able to incorporate estimates of unexpected uncertainty in their learning
[62–65]. Individuals adjust their learning rate in response to variations in volatility – the
frequency of changes in action–outcome contingencies (or the mean level of unexpected
uncertainty [65]) – separately for potential rewards and punishments [66]. Pupil dilation and
BOLD signals in the locus coeruleus, which are indicators of arousal, reflect subjective estimates of
unexpected uncertainty [63,67]. Activity in the anterior cingulate cortex tracks subjective estimates
of volatility and reflects individual differences in learning rate [65]. Using a hierarchical Bayesian learning
model, estimates of uncertainty during a probabilistic choice task predicted subjective stress and
arousal, exemplifying a tight link between stress responses and environmental uncertainty [68].
These studies suggest that conditioned threat responses do not correspond simply to the outcome
prediction, but rather to the degree of uncertainty surrounding that prediction.

Individuals with trait anxiety learnmore from recent punishments than healthy controls [69] but are
slow to adapt their learning rates in response to changes in threat volatility, and show reduced
pupil response to volatility [70]. Social contexts may exacerbate such reduced adaptability [71].
Inappropriate adjustment to changes in probability structure may also lead to poor decision making,
and contribute to increased symptoms if aversive outcomes are perceived as less predictable and
less avoidable [70].

Overall, extant evidence suggests that aberrant neural computations of value, prediction error,
associability, and estimations of uncertainty are related to anxiety and PTSD. The models
described above capture two important facets of associative learning: reinforcement learning
formalizes predictions of long-term accumulated outcomes; and Bayesian models track
uncertainty around learned associations. Models that merge the two computations have also
been proposed [57].

Flexible Threat Associations
Following the encounter with danger, an individual will emit defensive responses triggered by the
conditioned stimuli, but not for long. Eventually, for adaptive energy maintenance, those
defensive responses will dissipate and new learning will take their place. The inappropriate
lingering of learned defensive responses is part of a major PTSD symptom cluster in the DSM-5
[12], defined as alterations in arousal and reactivity (e.g., hypervigilance) that began or worsened
after the trauma. A prime mechanism that counteracts threat conditioning is extinction learning
– the decline in responding to a stimulus that previously signaled danger, following repeated
nonconsequential exposures [72]. Extinction can also be learned vicariously [73] or through
imagination of the conditioned cues [74] by capitalizing on neural mechanisms of direct learning.

Formalizing an associative learning model to describe extinction has been challenging. The RW
model, for example, views extinction as the unlearning of associative contingencies due to the
omission of the outcome, but this fails to account for the return of extinguished responses
under various circumstances (e.g., spontaneous recovery, renewal, reinstatement). The
Pearce–Hall model, alternatively, classifies extinction as new learning where omission of the
outcome in the presence of the conditioned stimulus creates a second association, such that
threat and extinction associations compete for expression. However, it is possible that a mixed
model, assuming cooperation between unlearning and new learning, best describes an individual’s
internal representation [75]. The latent cause model [76] captures that cooperation: individuals
update the associative weight between the stimulus and the outcome (i.e., unlearning) given
small prediction errors, but infer that a second rule is likely to be in effect (i.e., new learning) given
large prediction errors. In this way, an individual does not simply learn a single stimulus–outcome
Trends in Cognitive Sciences, Month 2020, Vol. xx, No. xx 9
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association, but rather parses experiences into latent causes, eachwith its own associative weight,
thus constructing a structure of the environment. During extinction, unlearning would dominate
over new learning byminimizing deviations from the individual’s expectations, such as transitioning
from conditioning to extinction by gradually changing association strengths over time [77]. The
model predicts that individuals who assume a single latent cause, and update only the initial threat
memory, will show weaker recovery of the extinguished response. Individuals who form a new
extinction memory, segmenting their experience into two latent causes, are more likely to show
greater recovery from extinction [78].

How the brain implements structure learning is unclear. A possible circuit mechanism for
structure learning postulates that latent cause representations, possibly originating from the
orbitofrontal cortex (OFC), activate hippocampal dentate gyrus cells, reflecting the likelihood of
the active cause. The VTA computes the discrepancy (i.e., the prediction error) between the
associative weights that the inferred cause predicts and the observed contingencies. The
prediction error signal is then transmitted via dopaminergic projections to the amygdala,
hippocampus, striatum, and PFC, thereby triggering memory updating or new learning; small
prediction errors alter the associative weight of the inferred cause, whereas large prediction errors
trigger neurogenesis of dentate gyrus granule cells to generate a new latent cause [79,80].

Beyond extinction, the power of the latent cause and other unifying models lies in their ability to
explain a multitude of post-conditioning phenomena, such as generalization of the response to
other stimuli, blocking learning to other stimuli, second-order conditioning, counterconditioning,
and more [57,79,81,82], thereby generalizing the RW model and addressing its explanatory
limitations. Further model development is required to capture the effect of multiple extinction
sessions, which may diverge into a separate circuit mechanism [83], and capture clinical
therapeutic processes more faithfully [84]. Another consideration is the lingering impact of
PTSD, which can last years and even decades. The longevity of the disorder is difficult to
explain using current learning models, each capturing a sliver of the symptoms. A synergistic
model describing howmultiple learning phenomena work together may explain the persistence
of defensive motivational states [85,86].

Life Cycle of Threat Memory
Aversive events serve as teaching signals instructing synaptic plasticity in the amygdala, resulting
in threat memory storage (Box 1). Interventions such as amnesic agents (e.g., protein synthesis
inhibitors) or electroconvulsive shock stimulation interrupt consolidation – the stabilization
period following the acquisition of a new memory. Once a memory has formed, however, it goes
into a life cycle of oscillations between periods of neural stability and instability (Figure 3). Memory
reactivation and destabilization trigger those periods of instability, providing opportunities for
modification. The same interventions that disrupt consolidation also interrupt – and therefore
support the existence of – a destabilization period following the reactivation of old memories. This
phenomenological similarity inspired the term reconsolidation, referring to the active process
necessary to restabilize a memory after it has been reactivated and destabilized [87,88].

The instability period, when old memories resurface, presumably serves the purpose of incorporating
new relevant information into the memory, instead of forming a new separate memory of present
events [89,90]. Experimental evidence supporting this theory introduced extinction learning following
the reactivation of a conditioned threat stimulus, leading to long-term reduction in conditioned
threat responses [91–95]. Another form of intervention used counterconditioning, which was
demonstrated in the context of appetitive conditioning. Here, a drug-related conditioned stimulus
was repeatedly paired with an aversive outcome (e.g., a disgusting image) following reactivation
10 Trends in Cognitive Sciences, Month 2020, Vol. xx, No. xx
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Figure 3. Life Cycle of Threat Memory. Memory encoding is the strengthening of neural connections through long-term
synaptic restructuring, a process occurring when different regions coactivate. A memory trace, or engram, is therefore not a
physical entity like a stored object, but rather the disposition of neural circuits to fire upon triggering by a certain reminder.
During reactivation, a memory becomes active when the engram ensemble fires. Reactivated memory is eligible for
retrieval, behavioral expression, and/or destabilization. This means that memories that are retrieved and expressed are not
necessarily destabilized, and that destabilization can even occur covertly without behavioral expression. Destabilization
involves a cascade of cellular and molecular processes (e.g., protein degradation) that instigate the transition of the engram
from a stable to an unstable state. At this point, the memory becomes susceptible to modification. Among the computational
principles that govern destabilization is trace dominance: a memory will be more malleable to amnestic manipulations to the
extent that it has control over behavior at the time of treatment. Prediction error is one of the parameters that influence trace
dominance and facilitate destabilization. Memory restabilization (reconsolidation) requires protein synthesis, among other
cellular/molecular events. Successful reconsolidation restabilizes the ensemble and restores the memory into its inactive
state. Manipulations that interrupt reconsolidation (pharmacological agents, behavioral interference, memory enhancers)
will reroute the memory toward erasure, strengthening, weakening, or updating. A memory that has not been erased may
cycle into another sequence of reactivation, destabilization, and reconsolidation. LTM, long-term memory.
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[96,97]. Other types of noninvasive interference could be effective, including those that deplete the
neural resources needed for reconsolidation, such as extensive sensorymotor tasks [98] (Figure 1).

How does new learning following reactivation differ from a standard associative learning session?
Why would reactivation–extinction, for example, lead to a more permanent reduction of threat
responses while standard extinction allows their return? The latent cause model, described in
the preceding text, offers a theoretical solution by formalizing the dynamic interplay between
learning and memory [79]. Applying the latent cause theory to the case of post-retrieval memory
modification stipulates that when a memory is retrieved, the brain assumes that the previously
inferred cause (originally assigned to the remembered event) is once again active. This inference
makes the memory eligible for updating because new information, now attributed to the original
cause, merges and thus changes the original memory. For example, the associative weights of
a cue–outcome association will permanently decrease due to the merging of extinction learning;
in other words, the memory has been updated. If the brain otherwise infers a new cause for the
surprising event, a new memory will be formed.

One of the parameters that nudges latent cause assignment, as featured in the model, is the
duration of the reminder cue. Reminder duration can be conceptualized as the length of exposure
or multiple repeated exposures with short gaps [79]. A brief exposure to the reminder cue favors
Trends in Cognitive Sciences, Month 2020, Vol. xx, No. xx 11
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the assignment of the reminder to the initial threat learning cause.With longer reminder durations,
prediction errors accrue, facilitating the inference of a new latent cause [99–104]. The model ex-
plains many of the boundary conditions of reconsolidation updating that have been observed in
laboratory experiments, and makes testable predictions about when a memory will or will not
maintain its original form [79].

One of the most important goals of clinicians treating anxiety and PTSD is to facilitate a change that is
enduring in patients. Achieving enduring change that is not easily prone to relapse conceivably
requires three essential components: reactivating the problematic memories along with the emotions
they elicit; altering those memories by having a corrective emotional experience during
reconsolidation; and building enduring semantic structures onto the updated memories, by
implementing new behaviors and ways of engagement with the world [105,106]. Some forms of
therapy, such as coherence therapy, are built on the principles of memory reconsolidation and are
designed to maximally optimize this process [107–109].

Decision Making under Threat
When a threat is detected or remembered, a rapid decision-making process ensues, resulting in
an approach (e.g., attack) or avoid reaction. Long after the imminent threat has dissipated,
decisions about cues that predict threat are likely to share some of the mechanisms with those
initial processes. These decisions may be adaptive (e.g., approaching a threat that could be
overcome, avoiding a real threat or a cue that predicts it) or maladaptive (e.g., avoiding a threat
that could be overcome or a benign cue).

The decisions that individuals make depend on their available courses of action, the potential
outcomes of each action, and the likelihood of each outcome. Common models of choice
posit that decision makers integrate the various properties of each option to compute its
idiosyncratic subjective value, and then choose the most valuable option [110]. Although
this may seem straightforward, we do not fully understand how these computations are
implemented in the brain. We do know that activation patterns in a network of multiple brain
areas reflect subjective values that are inferred from behavior (Figure 2). Activity in two areas
in particular, the ventromedial PFC (vmPFC) and the ventral striatum, is consistent with the
encoding of subjective values across different categories and under varying conditions
[111,112]. Other putative value regions include more dorsal regions of the medial PFC
[111,113], the OFC [114,115], the posterior cingulate cortex (PCC) [116], and the posterior
parietal cortex (PPC) [117].

While it is likely that activity in these areas encodes the value of potential rewards, the evidence
for value encoding of punishments, or threats, is less robust. Some neuroimaging studies in
humans report overlapping representations of positive and negative values [117–119]. Other
studies describe distinct representations of rewards and punishments in different brain
areas, with more medial representations of reward value and more lateral representations of
the value of punishments [120–122]. Single-unit studies in animals also report both distinct [123]
and overlapping [124] representations of rewards and punishments in the dopaminergic
midbrain, habenula, and medial PFC. In addition, some brain areas, including the vmPFC,
OFC, and PPC, encode aversive values in a monotonic manner (with decreasing activation
for more-aversive values), whereas other areas encode value in a u-shaped manner, with high
activation for both high rewards and high punishments, consistent with salience representation.
The salience network includes the ventral striatum, dorsal anterior cingulate cortex (dACC), anterior
insula, temporoparietal junction [111,114,117,125], and amygdala [126,127]. Thus, the ventral
striatum is the only region exhibiting both monotonic and u-shaped representations of value,
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indicating a dual role for this structure in encoding value and salience [36,111,114,125]. Whether
the brain first signals the salience of the stimulus (how important it is) to orient attention and then
determines its valence (positive or negative), or whether value is computed first, with salience
information (its absolute value) extracted later or in parallel, is an open question.

The likelihoods of potential outcomes are an important factor affecting the subjective value of
available options. For example, a 10% chance of sustaining an injury is not as bad as a 50%
chance of sustaining the same injury. Only seldom, however, are these likelihoods completely
known – a type of uncertainty known as risk or ‘irreducible uncertainty’. In most cases,
likelihoods cannot be precisely estimated; rather, there is some ambiguity or ‘estimation
uncertainty’ around those likelihoods (Box 3). Repeated sampling of the environment and
experiencing various outcomes can reduce ambiguity. Subjective values are influenced not just
by the objective levels of risk and ambiguity around potential outcomes, but also by individuals’
subjective perception of risk and ambiguity and their attitudes toward these sources of
uncertainty. Since risk and ambiguity attitudes are only weakly correlated across individuals,
they are likely to involve somewhat separate cognitive mechanisms (Box 4).
Box 4. Attitudes toward Risk and Ambiguity

Since most decisions are made under partly ambiguous conditions – where likelihood estimates exist but are not
precise – individuals’ behavior under uncertainty is modulated both by their risk attitude and by their ambiguity attitude
[211]. To estimate these attitudes in the laboratory, researchers use simple tasks in which participants are required to make
a series of choices between various uncertain and certain options. To elicit risk preferences, the choices are between options
whose outcomes and outcome probabilities are fully known (e.g., 50% chance to win $10), where one option is ‘riskier’ and
the other is ‘safer’ [212]. A risky option is one that offers a small probability for a high reward; a safe option would offer a
smaller reward, but at a higher probability. For example, a 50% chance to win $10 offers $5 on average, but at a higher risk
than a sure bet of $5. A risk-averse individual would prefer options that offer smaller amounts at higher probabilities over ones
that offer higher amounts at lower probabilities, even if the expected value (the product of the probability and amount) of the
latter is higher. A risk-seeking individual would show an opposite preference.

Most people tend to be risk averse when making choices between moderate potential monetary gains [213,214]. There
is high variability across individuals, however, in the degree of risk aversion, and a minority of people exhibit risk neutrality
(i.e., they choose based on the expected value alone) or even risk seeking [215]. This is important, because it means that
individual risk attitudesmay be associatedwith particular personality traits or psychopathological symptoms. The picture is
a bit more complex, however, because preferences change when the choice is between losses rather than gains. Here,
too, there is wide variability in individual preferences, but most people tend to exhibit risk seeking rather than risk aversion.
For example, in a choice between losing $8 for sure and taking a 50% chance of losing $20, many are likely to take the risk
[213]. Importantly, individuals’ attitude toward risk in the gain domain does not predict their attitude to risk in the domain of
losses (Figure I) [214,215], suggesting that these are two separate characteristics that may be differentially associated with
personality traits and clinical symptoms.

To elicit ambiguity attitudes, participants are also asked to make choices when some (or all) of the information about
outcome probabilities is withheld. Ambiguity aversion is commonly observed when the choice is between potential gains
[216–218]. In the domain of losses, there is some evidence for reduced ambiguity aversion, or even no effect of ambiguity
[215,219]. Importantly, risk and ambiguity attitudes are only weakly, if at all, correlated across individuals (Figure I)
[128,137,145,215,220,221], suggesting that they rely on cognitive mechanisms that are at least partly separable. The
individual’s behavior when making choices between potential gains also does not predict their choices between potential
losses. This means that there is likely to be no single unified trait of ‘uncertainty attitude’. Rather, it seems that how the
individual copes with uncertainty is a complex process, affected by several attitudes, which are largely independent.

A question of ongoing research is to what extent risk and ambiguity attitudes elicited in the laboratory reflect behavior
outside of the laboratory [222]. While there is some evidence for consistent risk attitudes across domains [129,223], task
specifics may affect estimates of these attitudes [224,225] (although this may arise from changes in the perceived risk
rather than the attitude toward risk [226]). It is also unclear to what extent risk and ambiguity attitudes are stable across
time (i.e., reflect a personality trait) and to what extent they reflect state variables, although it is possible that risk attitudes
are more stable and ambiguity attitudes more transient [221].
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Figure I. Risk and Ambiguity Attitudes in the Gain and Loss Domains Comprise Four Largely Independent
Decision Characteristics. Data reanalyzed from [215]. n = 99 participants from the general population between the
ages of 12 and 77 years.
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Howpotential outcomes and their likelihood estimates are integrated in the brain is not completely
clear. The integrated subjective value, reflecting an individual’s uncertainty attitudes, is encoded,
as expected, in the valuation network [113,128,129]. There is also ample evidence that
uncertainty is reflected by neural activity in several brain areas, including the ventral striatum
[130–135], PPC [136–138], the anterior insula [131,135,136,139,140], the lateral OFC and
ventrolateral PFC (vlPFC) [131,133,137,140,141], and the ACC [142]. Some of these studies
highlight potential differences between neural activation patterns encoding risk and ambiguity
[134,137,141]. Activity in the PPC [137,138,141], as well as the PPC’s structure [143,144],
reflects individual risk attitudes. In some studies, activity in the vlPFC reflects ambiguity attitudes
and not risk attitudes [134,137,141], but other studies report correlation with risk attitudes
[133,142], and a study in lesion patients also implicates the vlPFC in processing both risk and
ambiguity [145]. Finally, the structural and functional connectivity of the amygdala is associated
with individual risk attitudes [146]. Taking these findings together, while there is abundant
evidence for multiple representations of uncertainty in the brain, the underlying neural substrates
of those representations, and whether different types of uncertainty are represented separately,
remains unclear.

In addition to the integration of outcomes with their likelihoods, the decision maker also needs to
integrate the values of potential rewards and punishments. For example, using the car (Figure 1)
will be fast and convenient, but will also bring back memories of the aversive event. The weight
given to potential gains compared with potential losses (akin to threats) – or the degree of loss
aversion [147] – varies substantially across individuals, and serves as another source for individual
differences in decision making. In humans, subjective value representations in the vmPFC and
14 Trends in Cognitive Sciences, Month 2020, Vol. xx, No. xx



Trends in Cognitive Sciences
ventral striatum integrate over potential appetitive and aversive outcomes of available options
[118,148] and reflect the individual’s degree of loss aversion, as estimated from their choice
behavior [118]. Research in animals also implicates the amygdala in value integration. While the
activity of amygdala neurons reflects the value of both potential rewards and potential punishments
[149], lesion studies in rats suggest that the basolateral amygdala (BLA) has a specific role in
integrating rewards with punishments. BLA lesions led to increased choices of large rewards
accompanied by potential punishments, but did not impair sensitivity to the potential punishments
[150]. Optogenetic inhibition of the BLA during the simultaneous receipt of reward and punishment
also increased risk taking but inhibition during the deliberation phase had an opposite effect
[151], suggesting a heterogeneous role for the amygdala in value integration, which may rely
on the orchestrated activity of separate neuronal populations. Interestingly, unpredictable
outcomes – even in the absence of interaction with motivational value – lead to sustained
activity in the amygdala, in both humans and mice [152].

Thus, decision making as a whole integrates outcomes and their likelihoods, expected rewards
and punishments and their weights (loss aversion), various sources of uncertainty (irreducible
or risk, and reducible or ambiguity), and the individual’s attitudes toward uncertainty (risk and
ambiguity aversion). The decision maker then needs to compare the integrated values of the
different options to reach a choice; how this is done is a subject of ongoing research. It is possible
that integrated values are compared downstream of value computations [153] or that the choice
process is an inherent part of iterative value computations [154,155].

Following a traumatic event, changes in any of the computations of valuation and decisionmaking
may be observed [132]. In rodents, there is some evidence for malleability of valence encoding.
During acute stress, the presentation of rewards induces punishment-like responses in the lateral
habenula (i.e., a switch from the typical decreased firing rate to an increased firing rate), consistent
with a shift from value to salience encoding [156]. A different type of response shift occurs in the
nucleus accumbens, where neurons switch their preference from rewards to punishments in a
stressful environment [157].

In combat veterans with PTSD, the ventral striatum appears to shift from value to salience
encoding [158]. These individuals also exhibit enhanced aversion to ambiguity around potential
losses in a simple monetary choice task compared with combat veterans who did not develop
PTSD [159]. In a trauma-exposed community sample, self-reported intolerance of uncertainty
correlated with the severity of PTSD symptoms [160]. The evidence from animal research
suggests causality, i.e., that at least some of the changes in computations of valuation and
decision making in humans may result from the trauma. However, it is also possible that some
of the observed differences reflect predisposition for the development of PTSD, which preceded
the traumatic events. Abnormally enhanced intolerance of uncertainty may constitute a
transdiagnostic factor across anxiety disorders [161], given that anxiety-related pathologies,
including obsessive compulsive disorder (OCD) [162], generalized anxiety disorder (GAD) [163],
and social anxiety [164] also evince increased intolerance of uncertainty.

The intolerance of uncertainty observed when anxious individuals and those with trauma-related
psychopathology make choices is likely to affect how they learn. An intriguing question is to what
extent variations in uncertainty attitudes shape learning about threats. For example, in Pavlovian
and instrumental conditioning, outcomes are used to reduce ambiguity about the probabilistic
structure of the environment. Ambiguity aversion may hinder learning, because the individual
will make an effort to avoid the ambiguous situation; alternatively, it may strengthen acquisition,
if the individual will be increasingly motivated to reduce the level of ambiguity. Similarly, extinction,
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Outstanding Questions
What explains the lingering effects of
PTSD? Current learning models
cannot explain the longevity of the
disorder. A comprehensive model
encompassing multiple learning,
memory, and decision-making features
may be needed.

To what extent are model-based,
versus model-free, computations
involved in the development and
maintenance of post-trauma and
anxiety symptomatology?

How are value computations in the brain
used to generate choice? Subjective
values of threats, as well as rewards,
are encoded in a network of brain
areas, but whether and how these
values are compared to produce choice
is unclear.

What is the relationship between neural
representations of value and salience?
Are they computed in parallel or is
one estimated first and then used to
calculate the other?

Are the neural mechanisms that encode
uncertainty shared across learning,
memory, and decision-making
processes as well as across both
threats and rewards?

Towhat extent do aberrant computations
confer variability in traumatic stress and
anxiety and to what extent do they result
from stressful experiences?
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generalization, relearning, and other post-association processes all require the individual to
cope with varying levels of uncertainty. Whether the individual’s approach to uncertainty in the
context of decision making also underlies their handling of uncertainty in the course of learning is an
open question.

Concluding Remarks
A common method of investigation segments threat experience into separate stages and
processes, studying and diagnosing them independently. In reality, however, learning, memory,
and decision making never occur in isolation and are constantly intertwined. Formalizing first
principles may capture the basic computational processes that are a common thread, while
considering the stages of threat experience as the settings for these computations.

As described in the previous sections, a fine-grained look at the initial encounter with imminent
threat reveals a series of computations involving predictions about the outcomes of environmental
cues and actions in an uncertain environment. New cue–outcome and action–outcome
associations – arising via accumulated trial and error or models of the environment – are stored in
memory, guiding future behaviors. Newly formed associationswill go on to competewith, or facilitate,
other associations, which together will adjust the individual’s behavior to a changing environment.
The post-association phase further involves additional computations that segment the stream of
experience into distinct clusters, or hidden causes. This type of computation plays a major role in
the retrieval of learned associations, as it determines whether a certain memory will be updated or
remain unchanged, arbitrating between new learning and unlearning. Finally, choices based on
learned associations incorporate estimations of uncertainty to predict and optimize future outcomes.

PTSD and anxiety disorders may be linked to aberrant computations at any stage of threat
processing [165]. Improper computations may be specific to threat or extend to other domains,
such as reward processing or social interactions. Improper computationsmay also be limited to a
particular processing stage (e.g., learning) or shared by several stages (e.g., learning and decision
making). For example, the increased adjustment to surprising cues in PTSD may be specific
to threat learning or reflect a general learning deficiency, which is also at play when learning
about rewards. The intertwined nature of the various cognitive processes, the overlap in their
neural circuits, and the likely contribution of interactions between these processes to mental
disorders also reinforce the significance of studying whole-brain computations and connectivity
patterns [166].

To decipher the neural mechanisms of disorders such as PTSD, and to translate insights into the
clinic (Box 5), comprehensive approaches across domains and processes should be used.
Throughout the stages of threat experience, an individual confronts two core computational
problems: making predictions about long-term accumulated outcomes and tracking uncertainty
in the environment. These computations are first used in the initial assessment of the threat, next
in the use of cues and actions to confront it and to appropriately update memories in the
aftermath, and finally in the decisions shaped by this experience. To mimic this in the laboratory,
we could identify and track a specific set of computations (e.g., computation of estimation
uncertainty, or ambiguity) and examine it during tasks of learning, memory, and decision making,
under threat as well as reward experience. This approach could identify whether the dysfunction
lies in the computation itself and is domain general or in a specific domain, possibly due to
disruptions in the incoming and processing of a specific type of information. Such approaches,
in conjunction with longitudinal designs [167], are likely to generate new insights about threat
computations in the healthy brain, and about disruptions in these computations in disease (see
Outstanding Questions).
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Box 5. From Algorithms to Feelings

In this review, we have approached threat experience as a computational process involving sensory and internal inputs
computed into a behavioral output. Where should we place the subjective feeling of fear within this framework?
The felt quality of emotion, the feeling of threat, is a conscious mental state. This creates a gap that is difficult to
fill between what we can measure and the conscious experience [227]. A class of theories approaches
consciousness by differentiating first-order representations – mental representations of our situation or states
in the world (e.g., visual perception, threat) – which could be either cortical or subcortical representations,
versus higher-order representations, which are representations of other representations, often attributed to the
function of cortical regions [228]. From this perceptive, our review of the evidence suggests that threat computations belong
to the category of first-order representations, involving not only a subcortical defensive circuitry but also computations of value,
state, uncertainty, volatility, and more, occurring non-consciously and engaging multiple frontal and parietal cortical regions. By
contrast, the feeling of fear belongs to higher-order representations, engaging other circuits and integrating several processes,
including non-conscious memories, pre-existing schemas, and mental models [229,230]. Considering fear as a representation
or output of a more basic computational operation inspired calls to revisit our terminology to reflect the subject of investigation:
using ‘threat’ to describe the inner working of defensive survival circuits and ‘fear’ as a category of conscious experience [231].

Conscious, verbal descriptions of emotions in terms of their valence and arousal resonate with non-conscious
computations of utility and vigor [196,232,233], but there are no specific computations that map onto the conscious experience
of fear. Nevertheless, conscious experiencemay influence decisions and shape the output of neural computations. For example,
informing individuals about aversive contingencies influenced activation in the striatum and OFC to feedback-driven learning.
Amygdala responses resisted verbal warnings and changed only when individuals had direct experience of the relationships
between cues and outcomes [234]. Remembered feelings could influence the arbitration of choices by creating an anticipation
about how one might feel upon incurring an outcome [235,236]. Moods can bias the perceptions of outcomes and sway
decisions. For example, a negative outcome would be perceived as worse when one is in a bad mood. Moods could be
formalized as the cumulative impact of differences between actual and expected outcomes (i.e., a running average of recent
prediction errors). By reflecting the momentum of an outcome in a particular environment, mood helps an individual to account
for the statistics of the environment. This could be beneficial for steering away from an environment that induces bad mood, for
example, since the magnitude and frequency of negative surprise increasingly grow [237].

Understanding the distinction between the feeling of fear and the neural computations of threat can inform our approach to
PTSD and anxiety disorders. Identifying from which level symptoms arise can advise pharmacological and behavioral
treatment. The interactions between feelings and emotions could refine the assessment of aberrant behaviors as well as
facilitate treatment [197].
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