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Review

In August 1974, Philippe Petit, a young Frenchman, fixed 
a rope between the tops of the Twin Towers in New York, 
a quarter mile above the ground, and crossed it back and 
forth several times (Petit 2002). When Petit set out on this 
adventure, he took a risk. The outcome of his action was 
highly uncertain and could have been either highly posi-
tive—rewarding sensations of accomplishment, recogni-
tion, and fame—or devastating. Fortunately for Petit, his 
endeavor was successful.

Some degree of risk taking is generally deemed impor-
tant for achieving progress in any creative activity, 
including, for example, in science (Rzhetsky and others 
2015) or business (March and Shapira 1987). Extreme 
avoidance of risk is associated with trait anxiety (Maner 
and others 2007) and is a characteristic of anxiety-based 
disorders, such as obsessive-compulsive disorder 
(Pushkarskaya and others 2015b) and posttraumatic 
stress disorder (Ruderman and others 2016). Excessive 
risk taking, however, is also maladaptive and is linked to 
other mental disorders, including schizophrenia and bipo-
lar disorder (Reddy and others 2014). Increased risk-tak-
ing tendencies are also at the core of many harmful 
behaviors, such as substance abuse (Wagner 2001), reck-
less driving (Zuckerman and Kuhlman 2000), and unsafe 
sex (Donohew and others 2000).

What gives rise to risk behavior? Why do some people 
put their health, wealth, and well-being at risk, while oth-
ers avoid even the slightest uncertainty? Psychologists 
have been studying these questions for decades. In recent 

years they have been joined by neuroscientists, in an 
attempt to reveal the neural mechanisms underlying risk-
taking behavior. A useful approach to studying these 
mechanisms is to examine the neural bases of several 
rudimentary mental processes that contribute to risk-tak-
ing behavior, including, but not limited to, sensitivity to 
rewards and punishments, self-control, and the process-
ing of uncertainty.

Individual sensitivities to rewards and punishments 
likely play a role in risk-taking behaviors, which typi-
cally carry both positive and negative consequences. 
High sensitivity to rewards may lead a person to focus 
more on the rewarding aspects of a risky activity than on 
its possible adverse outcomes. Such an individual will be 
more drawn to that activity compared to a person who is 
less susceptible to reward. Conversely, sensitivity to 
punishment will attract the individual’s attention to the 
potential negative consequences of a risky activity, 
decreasing the likelihood that she or he will take part in 
that activity. An important aspect of these positive and 
negative outcomes of a risky action is that they typically 
occur at different points in time. For example, smoking a 
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cigarette is immediately rewarding to a smoker, but its 
health hazards will only occur in the future. Conversely, 
a risky business decision may have an immediate cost, 
but pay off in the future. Thus, self-control, or the ability 
to forgo immediate rewards in order to avoid future large 
costs, may hinder some risky behaviors, while accepting 
immediate costs to achieve future large gains may be 
associated with other types of risk taking.

But perhaps the hallmark of risky behaviors is that 
they involve uncertain outcomes. How an individual 
handles uncertainty will therefore strongly affect her or 
his tendency to engage in risky behaviors. A person 
who is tolerant of uncertainty will be more likely to 
take risks compared to one who finds uncertainty dis-
tressing. The processing of uncertainty is complex in 
itself and can be further decomposed into sub-pro-
cesses. Most notably, economists distinguish between 
uncertainty with known outcome probabilities, termed 
risk1 (Box 1), and uncertainty with unknown outcome 
probabilities, referred to as ambiguity (Box 1), a dis-
tinction that is proving useful in studying risk-taking 
behavior. Individuals vary substantially in how they 
perceive outcome probabilities (subjective probabil-
ity), how they tradeoff outcome magnitude against its 
probability (risk attitude), and how they treat ambiguity 
around outcome probabilities (ambiguity attitude). In 
this review, I will survey the neuroanatomical sub-
strates of the different cognitive processes that make 
risky behaviors in humans, focusing on uncertainty 
processing and individual differences in uncertainty 
attitudes. As we will see, prior research has made sub-
stantial stride in unraveling important uncertainty-
related neural mechanisms, but many open questions 
remain for future research.

Box 1. Economic Theory in the Research of Risky Behavior

In recent years, neuroeconomic studies have turned to 
ideas and techniques from the field of economics for decon-
structing risk taking—and decision making in general—into 
their constituent components (Glimcher 2008; Glimcher 
and Fehr 2014). A basic concept in risky choice is that of 
expected value (EV), a concept that was first raised by Pascal 
(1966). Pascal suggested that the desirability of any option 
that the decision maker considers is equal to the value of 
that option multiplied by the probability of obtaining that 
value:

Expected Value = Probability Value×

By that account, to make a choice between several options, the 
decision maker needs simply to compute the expected value of 
each option and choose the option of the highest value. This 
simple concept is, of course, too simple. Bernoulli (1738/1954) 
has made this point using an example of a very poor fellow that 
obtains a lottery ticket with an equal probability to win either 

20,000 ducats or nothing. Should this man evaluate his chance 
of winning at 10,000 ducats (its expected value), asks Bernoulli? 
Or should he be willing to accept a smaller amount, say 9,000 
ducats, in exchange for the lottery ticket? The intuitive answer, 
that this man should accept the 9,000 ducats, suggests that 
expected value is not a sufficient quantity for decision making. 
Rather, the expected utility or subjective value of an option should 
be considered. A subjective value function that is concave in 
respect to the objective value (the amount of ducats) can 
account for the risk preference we expect the poor fellow to 
exhibit (Fig. B1, blue curve). What happens in a concave value 
function is that subjective value increases more slowly than 
objective value. In the example in Figure B1, when the amount 
of money is doubled from 10,000 to 20,000 ducats, the subjec-
tive value only increases by 1.6. But the subjective value func-
tion can vary for different individuals, based on their wealth, as 
well as personal preferences and other characteristics. A 
power function of the following form:

Subjective Value = Probability Valuea×

could account for individual differences in risk preferences 
with a single parameter (α). Risk-averse behavior will be 
described with an α that is smaller than 1, while an α that is 
larger than one will capture risk-seeking behavior (Fig. B1).

Following Bernoulli, in the 20th century, Samuelson (1938) 
has introduced the powerful idea of revealed preferences. What 
Samuelson realized was that by making some very simple 
assumptions, for example, that if a person prefers an apple to 
an orange she will not also prefer an orange to an apple, one 
can make robust predictions about choice behavior. Based on 
a set of such simple assumptions, or “axioms,” Von Neumann 

Figure B1. Subjective value functions.

(continued) (continued)
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and Morgenstern (1944) developed their Expected Utility 
(EU) theory. What they showed was, that if a decision maker 
obeys these simple axioms, her or his behavior appears “as if” 
she or he attempts to maximize some utility (or subjective 
value) function.

A common strategy for estimating risk attitudes is therefore 
to fit choice behavior with such a utility function, for example, 
the power function above, and derive the a risk parameter (α in 
the case of a power function) that best describes each individu-
al’s behavior. Note that in this approach, risk attitude results 
from the way the outcome magnitude is perceived, rather than 
from how outcome probability is perceived. A somewhat differ-
ent, but related, approach to risk was developed in the finance 
literature, which conceptualizes risk as a cost due to the vari-
ance of potential outcomes (Markowitz 1991). For a risk-averse 
individual, the higher the variance the higher the cost. While a 
debate about which approach is more useful still exists, both 
models make similar predictions under many conditions, and 
the studies described here have used both.

Regardless of whether we follow the economic or the 
financial approach, if people indeed obeyed the simple axioms 
that Von Neumann and Morgenstern (1944) posited, we 
could have stopped here, with little need for further research 
of decision making. Soon after Von Neumann and Morgenstern 
developed their theory, however, it became clear that the axi-
oms are often violated. One of the earliest demonstrations of 
such violation was provided by Daniel Ellsberg (1961). Ellsberg 
proposed the following thought experiment: a participant is 
presented with two urns, one with 50 blue chips and 50 red 
ones (the 50–50 urn) and another with 100 blue and red 
chips in an unknown or ambiguous proportion (the ambigu-
ous urn). The participant is first asked to pick a color (red or 
blue) and then asked to state whether he would rather bet 
on drawing his chosen color from the 50–50 urn for a prize 
of $10 or from the ambiguous urn for a prize of $15. For the 
50–50 urn, the probability of drawing either blue or red is 0.5; 
for the second urn the probabilities are not known. Since the 
subject chooses the winning color, however, the probability of 
winning by betting on the ambiguous urn is still 0.5. This is 
because even if, in the worst case, all of the chips were of a 
single unknown color it was the subject who randomly picked 
that color. The choice is thus between $10 at a probability of 
0.5 (with the 50–50 urn) and $15, also at a probability of 0.5 
(with the ambiguous urn). Therefore, regardless of the form 
of their particular utility functions, rational decision makers 
should prefer to bet on the ambiguous urn. Ellsberg has antic-
ipated that many individuals would prefer to avoid the ambig-
uous urn, even at a substantial monetary cost, a prediction 
that has since received strong support from numerous 
empirical studies (Camerer and Weber 1992). It is important 
to remember, however, that although irrational in the labora-
tory, ambiguity aversion may, in many cases, protect us from 
unnecessary risk taking. Thus, depending on the specific con-
ditions, both too weak and too strong ambiguity aversion may 
be maladaptive. Importantly, since risk and ambiguity attitudes 
are not strongly correlated across individuals, both may inde-
pendently contribute to risk-taking behavior.

Methodological Issues of Studying 
Decision Making under Uncertainty

Risk-taking behavior inevitably involves uncertainty. 
Uncertainty, however, is not unique to risky behavior—it 
exists everywhere, in virtually any decision we make. 
Whether you choose a course from a menu, contemplate 
a retirement plan, or entertain the idea of a bungee jump, 
the outcome of your choice is never certain. A large num-
ber of human neuroimaging studies investigated the neu-
ral basis of decision making under uncertainty. Many 
early studies employed learning tasks, in which partici-
pants learned to associate stimuli with uncertain rewards 
or punishments and to select the stimuli that lead to better 
outcomes. A widely used example of such task is the 
Iowa Gambling Task (IGT; Bechara and others 1997). In 
the IGT participants are presented with four decks of 
cards, and on each trial draw a card from a deck of their 
choice. Each card is associated with either a gain or a 
loss. In two of the decks, most of the cards lead to large 
gains, but every now and then a card leads to an even 
larger loss, resulting in an overall loss in the long run. In 
the other two decks cards lead to lower gains, but even 
lower losses, resulting in a net gain. At the beginning of 
the task, participants have no information about outcome 
probabilities, which means that their initial decisions are 
made under complete ambiguity (Box 1). With time, 
ambiguity is reduced and healthy participants learn to 
limit their card choices to the “good” decks. Bechara and 
others (1997) have shown that patients with brain lesion 
in ventromedial prefrontal cortex (vmPFC; Fig. 1) are 
impaired on this task, supporting a role for vmPFC in 
risk-taking behavior and decision making in general. The 
complexity of the task, however, makes it difficult to 
delineate the specific role of vmPFC or the specific 
impairment in vmPFC-lesioned patients. In particular, 
learning from feedback is an important feature of the 

Box 1. (continued)

Figure 1. A schematic representation of central brain areas 
involved in risk taking behavior. ACC = anterior cingulate cortex; 
AI = anterior insula; DLPFC = dorsolateral prefrontal cortex; 
OFC = orbitofrontal cortex; PPC = posterior parietal cortex; 
vlPFC = ventrolateral prefrontal cortex; vmPFC = ventromedial 
prefrontal cortex; VS = ventral striatum.
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Figure 2. Examples of stimuli used to elicit risk attitudes. (A) Betting on whether the second of two consecutively presented 
cards will be higher or lower (adapted from Preuschoff and others 2006). (B) Presentation of stimuli that were previously 
associated with outcomes of particular magnitudes and probabilities (adapted from Tobler and others 2007). (C) Choice between 
a lottery and a certain amount. The lottery could be of varying outcome probability (left) and magnitude (adapted from Gilaie-
Dotan and others 2014).

IGT, and reduced earnings on the task may result from a 
general learning impairment. Alternatively, deficient per-
formance on the IGT may be due to overestimation of the 
positive value of potential gains, or underestimation of 
the negative value of potential losses. Therefore, while 
the IGT has been highly valuable in highlighting one of 
the central brain structures involved in decision making, 
many subsequent neuroimaging studies have opted for 
simpler designs, to allow for delineation of the neural 
bases of the various underlying cognitive processes.

Some of these subsequent studies eliminated the learn-
ing aspect of the task. For example, Preuschoff and others 
(2006) asked participants to bet on whether the first or 
second of two consecutively presented cards would be of 
a higher number (Fig. 2A). Cards were withdrawn from a 
deck of 10 cards, numbered 1 to 10, with no repetition. In 
this way, participants experienced varying levels of 
uncertainty during the anticipatory period between the 
presentation of the first and second cards. For example, if 
the number on the first card was 1 or 10, participants 
could predict with certainty that the second card would 
bear a higher or lower number respectively. Conversely, 

uncertainty was maximal if the first card was numbered 5 
or 6. Tobler and others (2007) used a simple paradigm, in 
which unique stimuli were associated with a particular 
reward and a particular probability (Fig. 2B) in an initial 
training session. Following training, single stimuli, with 
fully established associations, were presented in the main 
experiment. Knutson and others (2005) devised a task in 
which reward was obtained if participants pressed a but-
ton within a particular time window. The timing of the 
task was adjusted individually for each participant, yield-
ing trials with varying probabilities for success, and 
therefore varied probabilities for reward.

Several studies adopted the behavioral economics 
approach of “revealed preference” (Samuelson 1948). In 
these studies, participants choose between options that 
vary on their potential outcomes, as well as on the prob-
ability for obtaining these outcomes, and thus need to 
tradeoff reward and probability (Fig. 2C). Based on these 
observed choices, the researchers can estimate individual 
risk attitudes (Box 1). Consider, for example, the choice 
between receiving $5 for sure and playing a lottery that 
offers 50% chance of winning $10 (but also 50% of 
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winning nothing). Both options are of the same expected 
value (Box 1), but the lottery is risky. An individual who 
is not affected by risk (risk neutral) will be indifferent 
between these options. Conversely, a risk-averse individ-
ual would prefer the sure $5, whereas a risk-seeking indi-
vidual would opt for the lottery. To simplify the design 
and the interpretation of the neural results, some of these 
studies keep one of the options constant across trials, 
such that any change in neural activation from trial to trial 
can be directly related to changes in only one option. For 
example, Levy and others (2010) asked participants to 
make a series of choices between risky options. One 
option was always a probability of 0.5 to win $5, whereas 
the other option varied in its outcome probability (0.13–
0.38) and outcome magnitude ($5–$65). No feedback 
was provided during the experiment. Instead, after the 
completion of the scan a few trials were randomly 
selected and played for real money. This experimental 
feature incentivizes participants to reveal their true pref-
erences (Hertwig and Ortmann 2001); since participants 
do not know beforehand which trials would be selected, 
they have to treat each and every trial as if they will be 
paid according to their choice on that trial. Using these 
various techniques, functional and structural MRI studies 
have begun to unravel the neural processing of uncer-
tainty and the neuroanatomical substrates of individual 
differences in uncertainty processing.

Functional Studies of Decision under 
Risk

Several brain areas were implicated in the processing of 
risk, or uncertainty with known probabilities (Box 1). First, 
outcome probability is reflected in activation magnitude in 
ventral striatum (Tobler and others 2007) and vmPFC 
(Knutson and others 2005). Activity in both of these brain 
areas scales positively with probability, compatible with 
the role of these areas in the encoding of subjective value 
(Box 1) or the desirability of anticipated outcomes. Of 
course, increasing the probability for obtaining reward (or 
decreasing the probability for incurring a punishment) will 
make an available option more desirable, naturally leading 
to enhanced activation in value-related regions. In theory, 
this effect of probability may be incorporated in the way 
the subjective value of an option is perceived and does not 
require a separate neural encoding of probability. There is, 
however, evidence for neural encoding of the level of risk 
regarding outcome receipt, which is separate from the 
encoding of value. As seen in Figure 3, these two quantities 
can be distinguished from each other if measured over the 
full range of probabilities. As probability increases from 0 
to 0.5, both subjective value and risk increase monotoni-
cally. Conversely, when probability increases beyond 0.5, 
risk decreases monotonically, while subjective value 

continues to increase. Increased activation to increased risk 
was observed in several brain regions (Fig. 1), including 
the lateral orbitofrontal cortex (OFC)/ventrolateral pre-
frontal cortex (vlPFC; Huettel and others 2005; Tobler and 
others 2007), as well as in bilateral ventral striatum 
(Preuschoff and others 2006), anterior insula (Huettel and 
others 2005), and posterior parietal cortex (PPC; Huettel 
and others 2005).

The studies described so far focused on commonalities 
across participants to highlight brain circuits that partici-
pate in the processing of probability and risk. To under-
stand the neural basis of individual propensity to engage 
in risky behavior, however, it is crucial to examine indi-
vidual differences in activation patterns. To do this, the 
idiosyncratic risk attitude of each participant is estimated 
based on their behavior on the experimental task (Box 1), 
allowing researchers to look for psychometric-neuromet-
ric matches, or correspondence between behavior and 
neural patterns across participants. Not surprisingly, 
value-related activation patterns in lateral (Tobler and 
others 2009) and medial (Levy and others 2010) prefron-
tal regions were modulated by individual risk attitudes. 
Interestingly, activity in left PPC in response to choices 
that involved risky lotteries was also correlated with risk 
preference across participants (Huettel and others 2006). 
Although in humans the PPC has not received much 
attention in the context of risk taking and decision mak-
ing, substantial evidence from electrophysiological stud-
ies in monkeys support its role in these processes (Louie 
and Glimcher 2010; Louie and others 2011; Platt and 

Figure 3. Risk and subjective value as a function of outcome 
probability. While subjective value increases monotonically 
with reward probability, risk first increases and then 
decreases. This can be used to distinguish between neural 
encoding of probability (or value) and neural encoding of risk.
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Glimcher 1999; Sugrue and others 2004). This notion is 
reinforced by recent structural MRI findings, as described 
below.

Risk and Brain Structure

Recent studies have begun to unravel neuroanatomical 
features that are predictive of individual traits and capa-
bilities (Kable and Levy 2015; Kanai and Rees 2011). 
Such associations between structure and behavior are 
important, because unlike functional activation patterns, 
structural measures do not depend on the particular 
experimental paradigm, and are therefore likely to repre-
sent stable behavioral traits. Using voxel-based mor-
phometry (VBM), Gilaie-Dotan and others (2014) 
identified a region in right PPC whose gray-matter vol-
ume is predictive of individual risk attitudes. Two groups 
of participants made a series of choices between risky 
options (Fig. 2C) and went through anatomical MRI 
scans. The first group was tested in New York and pro-
vided data for a whole-brain exploratory analysis. Based 
on participants’ choice behavior, their risk attitudes were 
estimated with a standard economic model (Box 1). 

These attitudes were then used in a whole-brain VBM 
analysis, which revealed a single region, within right 
PPC, whose volume was significantly correlated with 
risk attitudes. Individuals with more gray-matter volume 
in this region were more tolerant of risk (or less risk 
averse) (Fig. 4A). A similar result was obtained when risk 
attitudes were estimated simply based on the proportion 
of trials in which participants chose the risky option, 
demonstrating that the results did not depend on the spe-
cific assumptions used to calculate risk attitudes. 
Following the exploratory analysis, data from a second, 
independent group of participants, scanned in 
Philadelphia, was used for a confirmatory analysis (Fig. 
4B). The gray-matter volume from the region identified 
in the first group was measured in participants of the sec-
ond group and used to successfully predict these partici-
pants’ risk attitudes. Conversely, the gray-matter volume 
of a control area in the vicinity of primary motor/primary 
somatosensory cortex did not yield significant predic-
tions. This finding is consistent with behavioral reports 
suggesting that, at least to some extent, risk preferences 
are stable across time (Harrison and others 2005). One 
should be cautious, however, in making inferences from 

Figure 4. A region in right posterior parietal cortex (PPC) predicts individual risk attitudes. (A) Exploratory analysis. Left: 
whole-brain VBM revealed a single brain region whose volume correlates with individual risk tolerance. Right: illustration of the 
association between gray-matter volume and risk tolerance. (B) Confirmatory analysis in an independent group of subjects. The 
gray-matter volume from the region identified in the exploratory analysis predicted risk attitudes in the new sample (left), while 
gray-matter volume from a control area did not (right). RH = right hemisphere.
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these VBM results about the underlying neural architec-
ture, as the relationships between the microstructure and 
structural MRI measures are still poorly understood 
(Kanai and Rees 2011). It should also be stressed that, 
just like fMRI results, VBM results cannot inform us 
about causality. While it could be the case that structure 
gives rise to risk attitudes, it is also possible that environ-
mental factors affect both, or even that behavior shapes 
structure.

Subjective Probability and Ambiguity

An individual’s willingness to take risks relies on how 
she or he balances the magnitude of a potential outcome 
with the probability that the outcome will occur. But how 
the individual perceives outcome probability will also 
contribute to her or his willingness to take a risk. 
Substantial research in economics suggests that people 
typically weigh outcome probabilities in a nonlinear 
manner. As Kahneman and Tversky described in their 
Prospect Theory (Kahneman and Tversky 1979; Tversky 
and Kahneman 1992), when participants are presented 
with explicit probabilities (e.g., “50% chance”) they tend 
to overweigh low probabilities and underweigh high 
probabilities, in the form of an inverted S-shaped func-
tion (Fig. 5). When probabilities are learned by experi-
ence, from repeated sampling, an opposite effect is 
observed, where small probabilities are underestimated 
and large probabilities overestimated, in the form of an 

S-shaped function (Hertwig and others 2004). fMRI data 
suggest that the inverted S-shaped nonlinear weighting of 
explicit probabilities is reflected in striatal activation 
(Hsu and others 2009), compatible with the role of this 
brain area in representation of subjective value. There is 
also evidence for a similar effect in the left dorsolateral 
prefrontal cortex (DLPFC; Tobler and others 2008). 
Interestingly, after some experience with these outcome 
probabilities, nonlinear S-shaped probability weighting is 
observed in ventrolateral prefrontal cortex (Tobler and 
others 2008).

Note that in most of the studies surveyed so far out-
come probabilities were precisely known. In these studies 
participants either saw explicit symbolic presentations of 
the probability information (Gilaie-Dotan and others 
2014) or acquired this information in a training proce-
dure, in which they experienced the potential outcomes 
repeatedly (Tobler and others 2007). In some of the stud-
ies, however, outcome probability was not precisely 
known (Knutson and others 2005). Indeed, in real life we 
can rarely estimate the probabilities for potential out-
comes of our actions in a precise way. We know the prob-
ability of getting heads when tossing a coin, and can 
calculate the precise probability for choosing the winning 
numbers in the New York Mega Millions lottery, but what 
is the chance that the chosen course at the restaurant will 
be satisfying? That drinking and driving will end in an 
accident? While some probability estimates can usually 
be generated, these estimates are seldom exact. Rather, 
outcome probabilities are usually at least somewhat 
ambiguous (Box 1). From a decision-theory point of 
view, ambiguity, or the precision in which outcome prob-
abilities are stated, should not affect choice. A long line of 
research, however, suggests that in many cases individu-
als are strongly affected by the presence of ambiguity. In 
particular, when choosing between possible gains, many 
individuals tend to avoid ambiguity, even at large finan-
cial or other costs (Camerer and Weber 1992; Ellsberg 
1961; Fox and Tversky 1995; Heath and Tversky 1991; 
Trautmann and others 2008). Importantly, how an indi-
vidual treats known probabilities (what economists call 
“risk”) tells us very little about how she or he treats ambi-
guity (Cohen and others 1987; Tymula and others 2013). 
Similarly, ambiguity and risk attitudes seem to follow 
separate, independent, developmental trajectories 
(Blankenstein and others 2016; Tymula and others 2012). 
This suggests that ambiguity attitudes (attitudes toward 
unknown probabilities) may contribute to risk-taking 
behavior, independently from pure risk attitudes (atti-
tudes toward known probabilities).

Several neuroimaging studies have examined decision 
making under conditions of ambiguity. Ambiguous 
options are created by withholding some of the informa-
tion about outcome probability, either by providing 

Figure 5. Subjective probability. When probability 
information is explicitly conveyed, low probabilities are 
typically overestimated, whereas high probabilities are 
underestimated.
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partial information or by physically occluding a graphic 
stimulus that conveys outcome probability (Fig. 6). Some 
of these studies compared complete ambiguity (i.e., no 
information about outcome probability) to no ambiguity 
(i.e., full information about outcome probability; Fig. 6A; 
Hsu and others 2005; Huettel and others 2006). There is 
evidence for increased processing of ambiguity compared 
to risk in lateral OFC, which is correlated with the level 
of ambiguity aversion across participants (Hsu and others 
2005). Taken together with the involvement of lateral 
OFC in encoding the level of risk (Huettel and others 
2005; Tobler and others 2007), these findings suggest a 
general role for lateral OFC in uncertainty processing. In 
experimental designs that resolved ambiguity at the end 
of each trial, activity in the neighboring region of vlPFC 
was associated with ambiguity preference across partici-
pants (Bach and others 2011; Huettel and others 2006), 

pointing to a potential role of this brain region in resolv-
ing ambiguity or in attempting to make sense of an 
ambiguous situation (although the direction of the corre-
lation was inconsistent across studies). More recent stud-
ies included conditions of partial ambiguity by 
parametrically modulating the information provided in 
each trial (Fig. 6B). Compatible with the effect of ambi-
guity on value, there is evidence for decreased activation 
in response to increasing ambiguity in the value-related 
vmPFC (Pushkarskaya and others 2015a). Moreover, 
activity in the vmPFC, as well as in the striatum, is cor-
related with subjective value, which takes into account 
individual ambiguity (as well as risk) attitudes (Levy and 
others 2010).

Learning under Uncertainty

In the studies described above, each choice situation (trial) 
was examined in isolation from other choices. To prevent 
learning, many of these studies also intentionally refrained 
from providing information about decision outcomes. 
While this feature of the experimental design is important 
for a clean delineation of uncertainty attitudes, real-life 
decisions are affected by context and changes in the envi-
ronment, including the previous choices that the individ-
ual made and the outcomes she or he has experienced. 
Failing to adapt to changes in the environment and to learn 
from the outcomes of previous decisions may lead to 
unnecessary risk taking. If consuming a certain food, for 
example, leads to nausea, it may be wise to avoid that par-
ticular food, and if a financial investment pays off, it may 
be worthwhile to make similar future investments. Kuhnen 
and Knutson (2005) examined how neural activation is 
associated with switches between subsequent decisions in 
an investment paradigm. In that paradigm, participants 
chose on each trial whether to invest in risky stocks or in a 
safe bond whose outcome was certain. The good stock 
was superior to the bad one in that it was more likely to 
lead to a positive outcome and less likely to lead to a nega-
tive outcome. Participants knew all this, but did not know 
which of the two stocks was the good one—they had to 
learn from experience. During this learning process, activ-
ity in ventral striatum was associated with switching from 
choosing a bond on the previous trial to choosing a stock 
on the current trial. Conversely, activity in anterior insula 
increased the likelihood of choosing a bond, but only 
when the prior choice was a stock. Thus, it is possible that 
the ventral striatum facilitates switching from risk-averse 
to risk-seeking behavior, whereas anterior insula facili-
tates the opposite switch. Kuhnen and Knutson have also 
compared the choices of their participants to the ones that 
an ideal Bayesian learning, aimed at maximizing expected 
value, would make. This comparison showed that ventral 

Figure 6. Stimuli used to elicit ambiguity attitudes. (A) 
Complete ambiguity. Comparison of ambiguity with no 
ambiguity. Top: adapted from Hsu and others (2005); Bottom: 
adapted from Huettel and others (2006). (B) Partial ambiguity. 
By occluding part of a risky lottery, some of the information 
about outcome probability is withheld, creating partial 
ambiguity (adapted from Gilaie-Dotan and others 2014).
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striatum activity increased the likelihood of choosing a 
stock where the ideal learner would choose the bond (risk-
seeking “mistake”), after previously choosing the bond, 
whereas anterior insula activity increased the likelihood of 
a risk-averse “mistake” (choosing a bond where the ideal 
learner would choose a stock), following a stock choice. 
Moreover, individual differences in the frequency of 
switching from a stock to a bond, as well as the frequency 
of “risk-averse” mistakes are reflected in anterior insula 
activation. Interestingly, anterior cingulate cortex (ACC) 
exhibited increased activity when the model predicted 
maximal response conflict—that is, when it was unclear 
whether the stock or the bond had higher expected value. 
More recent studies of learning under uncertainty impli-
cated the same brain area in encoding the level of ambigu-
ity in the environment (Behrens and others 2007; 
Payzan-LeNestour and others 2013) (those studies used 
the term “estimation uncertainty” for ambiguity). These 
findings in the ACC are consistent both with a long line of 
research implicating the ACC in conflict and error moni-
toring (Carter and others 1998; Shenhav and others 2014) 
and with recent studies that implicated the ACC in forag-
ing decisions (Kolling and others 2012). The latter func-
tion is especially interesting in the context of risk-taking 
behavior, because, rather than a choice between a limited 
number of options, as in the typical laboratory experi-
ment, risk behavior often entails a decision to explore 
multiple novel options (foraging). Indeed, a recent study 
suggested that the same brain area is involved in adapting 
risk attitudes to changing conditions (Kolling and others 
2014).

Reward and Punishment Sensitivity

Risk taking is influenced not just by how the individual per-
ceives and treats uncertainty but also by how she or he per-
ceives and treats the potential rewards and punishments that 
may result from the risky behavior. If the reward of a risky 
action is perceived as highly positive, or the potential pun-
ishment as only slightly negative, the subjective value of the 
action will be higher. For example, a person who empha-
sizes the positive effect of a drug of abuse and plays down its 
potential harms will be more likely to engage in drug abuse 
compared to someone who focuses on the negative potential 
results of drug use. There is now substantial evidence for a 
“valuation system” in the brain that encodes the desirability 
of expected and experienced outcomes (Bartra and others 
2013; Clithero and Rangel 2014; Levy and Glimcher 2012). 
Activity in this system, that consists of at least the vmPFC 
and ventral striatum, scales with the value of both rewards 
and punishments (Tom and others 2007) of various catego-
ries (Chib and others 2009; FitzGerald and others 2009; 
Levy and Glimcher 2011; Lin and others 2012; McNamee 

and others 2013). Other factors that affect the subjective 
desirability of a prospect are also reflected in activation of 
these areas, including the delay to reward (Kable and 
Glimcher 2007), self-control (Hare and others 2009), and, as 
mentioned above, risk and ambiguity (Levy and others 
2010). There is evidence for integration of potential gains 
and losses in these areas. Thus, when choosing whether or 
not to accept risky gambles with 50–50 chance of a gain or a 
loss, activity in both vmPFC and ventral striatum scales with 
both the potential gain and the potential loss (Tom and oth-
ers 2007). Importantly, individual ratios of sensitivity to 
gains and sensitivity to losses correlated with the ratio of 
neural modulation by gain and loss magnitudes. Further sup-
port for the notion of value integration in vmPFC comes 
from a study showing interactive integration of the values of 
probabilistic combinations of monetary rewards and electric 
shocks, which participants chose whether to accept (Park 
and others 2011). While the neural mechanisms of value 
integration are not fully understood, this integration mecha-
nism may play a role in risk-taking behavior.

Summary and Open Questions

A network of brain areas contribute to risk-taking behav-
ior. Not surprisingly, individual preferences for risk and 
ambiguity, as well as for rewards and punishments, are 
reflected in activation patterns in value-related areas, most 
notably the vmPFC and the ventral striatum. While this 
modulation of the subjective value representation may 
have practical implications for improving predictions of 
future risk taking, a more interesting question from a neu-
robiological point of view is what sources provide input to 
the valuation areas. A series of functional neuroimaging 
studies implicated the anterior insula, anterior cingulate 
cortex, PPC, and lateral OFC/vlPFC in processing various 
aspects of uncertainty, and showed that individual uncer-
tainty attitudes are reflected in activation patterns in these 
areas. Moreover, the neuroanatomy of the PPC is itself 
predictive of individual risk attitudes, suggesting that this 
brain region may be associated with stable trait-like risk-
taking propensity. Several additional neural structures that 
have not been surveyed here are likely also linked to risk-
taking behavior. This includes the right DLPFC, whose 
disruption with transcranial magnetic stimulation has 
been shown to increase risky choices (Knoch and others 
2006), and the amygdala, which has a central role in emo-
tional processing (Phelps and LeDoux 2005). Future 
research will need to identify the parts of this network that 
play a causal role in risky behavior and characterize the 
orchestrated contribution of the various components to 
such behavior. Many additional questions remain open. 
Most important, it is not clear whether the findings from 
the laboratory experiments, most of which employed 
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paradigms with either monetary or hypothetical “points” 
outcomes, can generalize to more realistic decisions and 
to other decision domains. While there is some evidence 
for consistent risk attitudes across rewards domains, spe-
cifically food and money (Levy and Glimcher 2011), there 
is also behavioral evidence for domain-specific uncer-
tainty attitudes (Weber and others 2002), and substantial 
evidence for different risk and ambiguity attitudes for 
gains and losses (Tymula and others 2013). Whether the 
same neural mechanisms support vastly different risk-
taking behaviors, such as financial investments and medi-
cal decisions, remains to be seen. Another interesting 
question is how much of this neural architecture is hard-
wired, and how much may be shaped by experience. As 
decreased or increased risk-taking behavior is closely 
linked to psychopathology and substance abuse, under-
standing the relevant neural circuitry, its variations in 
pathological conditions, and how it may be modified by 
behavioral and pharmacological interventions is of high 
public health value.
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Note

1. Note that this economic definition of risk is separate, and 
narrower, from the day-to-day usage of the word. In this 
review, I use the term “risk” in this narrow economic 
sense, and the terms “risk taking” or “risk behavior” for 
the broader meaning of risk.
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