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Posttraumatic stress disorder (PTSD) is associated with changes in fear learning and decision-making, suggesting involvement of
the brain’s valuation system. Here we investigate the neural mechanisms of subjective valuation of rewards and punishments in
combat veterans. In a functional MRI study, male combat veterans with a wide range of posttrauma symptoms (N= 48, Clinician
Administered PTSD Scale, CAPS-IV) made a series of choices between sure and uncertain monetary gains and losses. Activity in the
ventromedial prefrontal cortex (vmPFC) during valuation of uncertain options was associated with PTSD symptoms, an effect which
was consistent for gains and losses, and specifically driven by numbing symptoms. In an exploratory analysis, computational
modeling of choice behavior was used to estimate the subjective value of each option. The neural encoding of subjective value
varied as a function of symptoms. Most notably, veterans with PTSD exhibited enhanced representations of the saliency of gains
and losses in the neural valuation system, especially in ventral striatum. These results suggest a link between the valuation system
and the development and maintenance of PTSD, and demonstrate the significance of studying reward and punishment processing
within subject.

Translational Psychiatry          (2023) 13:101 ; https://doi.org/10.1038/s41398-023-02388-4

INTRODUCTION
Following a life-threatening experience, some individuals develop
posttraumatic stress disorder (PTSD). Due to its highly hetero-
geneous and comorbid structure, a significant controversy
remains around the neurobiological underpinnings of the com-
plex presentation of PTSD.
To date, much of the research of PTSD focused on the neural

processing of negative stimuli related to fear and trauma. This
work has identified functional variations in amygdala, hippocam-
pus, and ventromedial prefrontal cortex (vmPFC) [1–5]. Individuals
suffering from trauma-related symptoms, however, also often
present with impairments in the reward system, which are
primarily manifested by negative cognitions and mood symptoms
(e.g., anhedonia) [6, 7]. Intact reward processing is crucial for stress
resilience [8, 9] and overcoming trauma; deficit in this system may
promote the maintenance of trauma-related symptomatology.
Understanding reward mechanisms in PTSD can thus inform new
approaches to diagnosis and individualized treatment.
A few imaging studies did employ experimental paradigms

with monetary (or point) rewards, and reported altered activation
patterns in regions of the valuation system. These studies
focused mostly on the neural response to receipt of reward,
reporting lower striatal [10, 11] and medial prefrontal [10, 12]
activation to gains, in PTSD compared to controls. Studies that
examined the anticipation stage [11, 12], did not find group

differences, but one study reported significant difference in
striatal activation to gains in controls, but not in PTSD [11],
whereas the other study reported an opposite result [12]. Taken
together, it is still not clear whether and how decisions about
rewards are altered in PTSD. Moreover, any observed alterations
could reflect differences in the neural computations of value as a
function of PTSD symptom severity, or differences in upstream
circuits that feed into intact value computations. To answer this
question the neural analysis must take into account the
individual’s behavior on the task, and search for the encoding
of subjective value of rewards and punishments.
In the current study, we combined a decision-making task with

functional magnetic resonance imaging (fMRI) and computational
modeling to examine the neural encoding of subjective values of
monetary gains and losses in veterans exposed to combat trauma.
Our participants were veterans who experienced combat trauma,
and developed a wide range of symptoms. Importantly, our task
did not include outcomes, precluding the effect of learning on the
processing of gains and losses. Since uncertainty is of particular
importance for PTSD [5, 9, 13], our task focused on uncertain gains
and losses. We first conduct a whole-brain analysis to search for
associations between activation magnitude and symptoms (GLM
1), and then focus on value-related brain areas to look for specific
effects of symptoms on the strength of encoding subjective-value
(GLM 2, GLM 3) and saliency (GLM 4, GLM 5).
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METHODS
Participants and clinical assessment
A total of 68 male veterans (ages: 23.6–74.6; Mean ± SD: 39.4 ± 11.5), who
had been deployed and exposed to combat, were recruited and screened
by trained psychiatric clinicians. PTSD symptoms and diagnoses were
determined using the Structured Clinical Interview for DSM-IV (Diagnostic
and Statistical Manual of Mental Disorders, 4th Edition) (SCID) [14] and the
Clinician Administered PTSD Scale (CAPS) for DSM-IV [15]. PTSD symptoms
were also rated based on the 5-factor model, which was found to provide a
better fit to the clustering of PTSD symptoms than the DSM-IV [16]. For
robustness, we also used the PTSD Checklist for DSM-5 (PCL-5) [17]. The
measures of CAPS and PCL-5 were highly consistent and were strongly
correlated across veterans in our sample (Spearman’s ρ= 0.82, p < 0.001,
n= 57). Notably, PCL-5 scores were more variable among those with a
CAPS score of zero, so we conducted correlation analysis between
behavioral / neural results and symptoms using both CAPS and PCL-5 to
confirm that the associations between symptoms and behavioral / neural
results are robust. Additional measures included the Beck’s Depression
Inventory (BDI) [18], State-Trait Anxiety Inventory (STAI) [19], Dissociative
Experiences Scale (DES) [20], Combat Exposure Scale (CES) [21], and
Childhood Trauma Questionnaire (CTQ) [22]. Participants with psychosis,
bipolar disorder, traumatic brain injury, neurologic disorder, learning
disability, and attention-deficit hyperactivity disorder (ADHD) were
excluded after screening. The Kaufman Brief Intelligence Test (KBIT) [23]
was administered as a measure of non-verbal intelligence. To account for
comorbidities and the degree of trauma-exposure, we conducted principal
component analysis (PCA) on all clinical and trauma-exposure measure-
ments (CAPS, BDI, STAI, DES, CES, and CTQ). Table 1 and Fig. 2A, B describe
characteristics of the sample.
Of the 68 veterans initially recruited, 10 veterans were excluded since they

failed a behavioral quality check (see Experimental design section), resulting
in 58 participants (ages: 23.6–67.0; Mean ± SD: 37.32 ± 9.00, Table 1) reported
in the behavioral anslysis. Most of these veterans were exposed to combat
trauma in Afghanistan (n= 12), Iraq (n= 16), or both (14). A few experienced
trauma in Kuwait (n= 5), Afghanistan and Kuwait (n= 1), Iraq and Kuwait
(n= 1), Vietnam (n= 1), or Somalia (n= 1). For the rest (n= 7) we did not
have information about the specific conflict they participated in. Of these 58
participants, 10 veterans were further excluded because of excessive

movement in the scanner (see MRI data analysis section), resulting in an
effective sample size of 48 participants (ages: 23.6–67.0; Mean ± SD:
37.07 ± 9.30, Table 1) for the neural analysis. One veteran had missing data
on CAPS due to incomplete record, but met full PTSD criteria on the partial
record. Also due to incomplete data, 55 participants were reported in PCA
analysis on all clinical and trauma-exposure measurements. Our main analysis
was dimensional, except for the exploratory analysis reported in Fig. 4C, D,
where participants were divided into two groups based on CAPS (Fig. 2A,
Table 1).
The study was approved by the Yale University Human Investigation

Committee (HIC) and Veterans Affairs (VA) Connecticut Institutional Review
Board (IRB), and compliance with all relevant ethical regulations was
ensured throughout the study. All participants gave informed consent and
were compensated with $100 plus a variable bonus ($0-$240) based on
their choices in the task (see Experimental design).

Experimental design
The study consisted of three separate visits (Fig. 1A). After the first visit
of clinical assessements, eligible participants underwent two fMRI
sessions (Day 1 and Day 2) in order to limit the scanning time for each
visit. Participants performed a task based on previous neuroimaging [24]
and behavioral [13] studies. The task consisted of a series of choices
between a sure monetary outcome and a lottery with either known
(risky) or unknown (ambiguous) outcome probability, in scenarios of
either gaining or losing money (Fig. 1B). We fixed the sure monetary
outcome as either gaining or losing $5, and varied the probability (25%,
50%, 75%), ambiguity (74%, 50%, 24%) and the outcome magnitude (±
$5, 6, 7, 8, 10, 12, 14, 16, 19, 23, 27, 31, 37, 44, 52, 61, 73, 86, 101, and 120)
of the lottery to make 120 unique trials in gains and 120 unique trials in
losses. On each trial, participants viewed the two options for 6 s, and
then made a choice (Fig. 1D). Gain and loss trials appeared in separate
blocks (4 gain and 4 loss blocks), to minimize influence of one on the
other. The block order was counterbalanced across participants, with
half the participants seeing order 1: Day 1: Gain-Gain-Loss-Loss; Day 2:
Loss-Loss-Gain-Gain; and half seeing order 2: Day 1: Loss-Loss-Gain-Gain;
Day 2: Gain-Gain-Loss-Loss. The trial order within each block was
pseudorandomized.

Table 1. Descriptive statistics of demographics and clinical measures.

Reported in behavioral results Reported in neural results

Total PTSD Control Total PTSD Control

Number of participants 58 24 34 48 19 29

Age 37.32 (9.00) 34.70 (6.44) 39.17 (10.03) 37.07 (9.30) 35.59 (6.86) 38.62 (10.42)

Kaufman Brief Intelligence
Test (KBIT)

109.12 (12.52) 105.63 (10.52) 111.59 (13.22) 107.23 (13.51) 104.16 (11.24) 112.97 (13.42)

Clinician Administered PTSD
Scale (CAPS)-Total Score

33.48 (34.68) 72.13 (15.04) 6.21 (9.68) 44.43 (36.75) 71.42 (15.52) 5.55 (9.40)

CAPS-Re-experiencing 8.60§ (10.30) 19.83* (6.79) 1.00 (1.86) 10.30 (11.01) 19.84 (7.41) 1.00 (1.95)

CAPS-Avoidance 4.58§ (5.55) 10.65* (3.41) 0.47 (1.38) 6.18 (5.68) 10.21 (3.52) 0.38 (1.21)

CAPS-Emotional Numbing 7.93§ (9.67) 18.13* (6.61) 1.03 (3.03) 10.95 (10.18) 17.95 (6.91) 0.72 (2.14)

CAPS-Dysphoric Arousal 7.28§ (7.29) 15.09* (3.15) 2.00 (3.65) 9.56 (7.49) 14.89 (2.81) 1.79 (3.40)

CAPS-Anxious Arousal 4.43§ (4.30) 8.44* (2.56) 1.71 (2.87) 5.71 (4.47) 8.53 (2.41) 1.66 (2.93)

PTSD Checklist for DSM-5 (PCL-5) 23.57 (21.92) 41.54 (15.79) 10.88 (15.95) 29.34 (23.32) 42.37 (15.46) 9.93 (15.99)

Beck Depression Inventory (BDI) 14.03 (14.77) 26.11 (13.80) 5.50 (7.88) 16.90 (14.86) 24.95 (13.40) 5.07 (8.08)

State Anxiety (STAI-1) 38.95 (13.26) 47.92 (12.72) 32.62 (9.43) 41.03 (12.80) 46.96 (11.41) 31.69 (8.69)

Trait Anxiety (STAI-2) 37.95 (15.53) 47.32 (16.23) 31.33 (10.94) 39.71 (15.36) 45.62 (16.07) 30.12 (10.32)

Dissociative Experience
Scale (DES)

28.37§ (32.54) 44.04 (34.53) 17.31** (20.75) 34.81 (33.81) 47.53 (36.50) 16.17 (20.61)

Combat Exposure Scale (CES) 15.81§ (9.41) 19.96* (9.06) 13.00 (8.57) 18.27§ (10.09) 21.06*** (9.70) 13.14 (8.19)

Childhood Trauma
Questionnaire (CTQ)

36.29§ (11.42) 39.04* (14.03) 34.43 (8.76) 37.45§ (13.58) 39.05*** (15.53) 34.64 (9.25)

Mean (standard deviation).
*n= 23; **n= 33; ****n= 18; §n= 57. Fewer number of participants for several measures was due to incomplete data.
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To prevent learning, the outcome of the chosen option was not
presented during the scan. Before the first session, participants received an
endowment of $120. In the end of the study, one randomly selected trial
was realized for bonus payment, which was added to the endowment or
subtracted from it. Participants were introduced to the task on Day 1 and
were reminded of the instructions on Day 2. In 12 trials, the non-zero
lottery outcome was identical to the certain amount (±$5), and one option
was clearly better than the other (e.g. a certain gain of $5 should be
preferred over a 50% chance of gaining $5). Data from participants who
chose the inferior option on >50% of these trials were excluded.

MRI scans
MRI data were collected with two scanners (due to scanner upgrade) at the
Yale Magnetic Resonance Research Center: Siemens 3 T Trio (37
participants, 29 reported) and 3 T Prisma (31 participants, 19 reported),
using a 32-channel receiver array head coil. High resolution structural
images were acquired by Magnetization-Prepared Rapid Gradient-Echo
(MPRAGE) imaging (TR= 2.5 s, TE= 2.77 ms, TI= 1100ms, flip angle= 7°,
176 sagittal slices, voxel size= 1 × 1 × 1mm, 256 × 256 matrix in a 256mm
field-of- view (FOV)). Functional MRI scans were acquired using a multi-
band Echo-planar Imaging (EPI) sequence (multiband 4, TR= 1000ms,
TE= 30ms, flip angle= 60°, voxel size= 2 × 2 × 2mm, 60 2mm-thick
slices, in-plane resolution= 2 × 2mm, FOV= 220mm).

Model-based estimation of subjective value
We fitted each individual participant’s data into a behavioral economics
model that was used in previous studies [13, 25], separately for gain and
loss trials. The model contained two decision processes: valuation (1) and
choice (2). Subjective value (SV) of each option was modelled as

SV ¼ P � β
A
2

� �� �
´ Vα (1)

where P is the outcome probability (0.25, 0.50, or 0.75 for risky lotteries, 0.5
for ambiguous lotteries, and 1 for the certain option); A is the ambiguity
level (0.24, 0.5, or 0.74 for ambiguous lotteries; 0 for risky lotteries and the
certain amount); V is the non-zero outcome of the lottery or the amount of
money of the certain option. For the loss domain, Vs were entered with a
positive sign. Risk attitude was modeled by discounting the objective
outcome magnitude by α. Ambiguity attitude was modeled by discounting
the lottery probability linearly, by the ambiguity level weighted by β.
The probability of choosing the lottery option (PL) was modeled as a

standard soft-max function,

PL ¼ 1
1þ eγ SVL�SVCð Þ (2)

where SVC and SVL are the subjective values of the certain option and the
lottery respectively, calculated by Eq. (1); γ is the noise parameter.

Fig. 1 Study design. A Timeline of the study. Participants went through a screening session and two scanning sessions on three different
days. The screening session determined participants’ eligibility based on PTSD diagnosis, combat exposure, and exclusion of other
neurological disorders. Eligible participants were scanned on two separate days on a decision making task. Measure labels: SCID: Structured
Clinical Interview for DSM-4, CAPS: Clinician Administered PTSD Scale, PCL5:, PTSD Checklist for DSM-5, BDI: Beck Depression Inventory, STAI:
State and Trait Anxiety, DES: Dissociative Experiences Scale, CES: Combat Exposure Scale, CTQ: Childhood Trauma Questionnaire, KBIT:
Kaufman Brief Intelligence Test. B Task design: participants chose between a lottery and a sure outcome under four conditions: risky gains,
ambiguous gains, risky losses, and ambiguous losses. Lotteries are shown as examples. Outcome probability of the risky lottery was
represented by the area of the red or blue rectangle and was fully known to the participant. Outcome probability of the ambiguous lottery
was covered by a grey rectangle in the middle, thus was partially known to the participant. C Levels of risk (outcome probability, 25%, 50%,
and 75%), ambiguity (grey area, 74%, 50%, and 24%), and monetary outcomes (20 monetary gains and 20 monetary losses) of the lottery. Each
unique combination of uncertainty level and outcome level was presented once, for a total of 240 trials. D On each trial, participants had 6 s to
view the options, and made a choice following a green response cue. They had a time limit of 3.5 s to register the choice, after which they
would immediately see a confirmation with the yellow square representing the side they chose. The lottery was not played out during the
scan to avoid learning. The inter-trial-interval (ITI) was jittered among 4, 6, and 8 s, and the remaining time during the response window (3.5 s
—response time) would be added to the ITI.
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We obtained four attitudes (risk and ambiguity attitudes under gains and
losses) from each participant. Separate fits for each day revealed consistent
attitudes across days (risky gains: r= 0.7, n= 57, p < 0.001; risky losses:
r= 0.8, n= 57, p < 0.001; ambiguous gains: r= 0.36, n= 56, p= 0.006;
ambiguous losses: r= 0.36, n= 55, p < 0.007). For the behavioral analysis, we
thus refit the data combining the two scanning sessions. We transformed all
attitudes such that negative values indicate aversion and positive values
indicate seeking: risky gains: α–1, risky losses: 1–α, ambiguous gains: -β,
ambiguous losses: β. We also fitted each session’s choice data of each
participant separately for calculating the trial-wise subjective value of the
lottery for General Linear Model (GLM) neural analysis.
After model fitting, we correlated the risk or ambiguity attitude in the

gain or loss domain with clinical symptoms, including CAPS, PCL-5, and
principal components from the PCA analysis. In our data, PCL-5 scores and
principal components showed more variability among those with a CAPS
score of zero, so we used Pearson’s correlation for any analysis including
PCL-5 or principal components, and Spearman’s rank-order correlation for
analysis including CAPS.
For the neural analysis, we repeated the behavioral fits separately for

each day, to obtain the most accurate estimates for risk and ambiguity
attitudes at the time of the scan.

fMRI data analysis
MRI data were preprocessed in BrainVoyager (Version 20.2.0.3065). Each
participant’s anatomical images were normalized to the standard brain
template in Talairach space. Preprocessing of functional data included
motion correction, slice scan time correction (cubic spline interpolation),
temporal filtering (high-pass frequency-space filter with cut-off cycle of 3),
spatial smoothing (Gaussian filter with 8mm full-width at half-maximum),
co-registration to high-resolution standardized anatomical data, and
normalization to Talairach space. Scan data with movement of over 2mm
in any direction were excluded from analysis. 10 participants showed
excessive movement in all scan runs, and their data were completely
excluded. For 15 participants, only some of the runs were excluded. Among
these 15 participants, 1–2 runs were excluded on average per participant
and 24 runs were excluded in total (note that 8 runs were conducted per
participant, so the exclusion rate was 20% for these 15 participants).
First-level GLM analysis was conducted in the Neuroelf toolbox (Version

1.0, https://neuroelf.net/) through MATLAB (Version R2018b). The pre-
processed fMRI signal time course was converted to percent signal change
within each scanning block, and each voxel’s activity was modeled by
predictors convolved with a standard double-gamma hemodynamic
response function (HRF). The following GLMs were conducted:

GLM 1: General activity during decision making. The model included binary
predictors for all four decision conditions: ambiguous gains, risky gains,
ambiguous losses, and risky losses. Each predictor was modeled as a box-
car function with the duration of choice display (6TR), convolved with a
standard HRF. We ran this GLM on the Day1 and Day2 scan data separately.
Due to scan run exclusion based on excessive movement, on Day1, one
participant was missing gain trials, and two participants were missing loss
trials. Thus, in the reported analysis results, 47 participants were included
for gains and 46 participants were included for losses.

GLM 2: Encoding of subjective value. Here each of the binary predictors
from GLM 1 was accompanied by a parametric modulator based on the
trial-wise subjective value of the lottery. Subjective values of the lottery
(positive for gains, negative for losses) were Z-normalized within each
scanning block, so that the estimated effect reflected the neural response
to the variation of subjective value rather than to its absolute magnitude.

GLM 3: Encoding subjective value across gains and losses. Here we
combined gain and loss trials and only included two binary predictors:
ambiguous trials and risky trials, with corresponding parametric mod-
ulators of subjective value. This model allows us to search for monotonic
value-encoding of subjective values.

GLM 4: Encoding the saliency of gains and losses. This model was similar to
GLM 3, except the parametric modulator was based on the absolute
(unsigned) subjective value. This allowed us to search for U-shaped
saliency-encoding of subjective values.

GLM 5: Categorical value predictors. To directly visualize the subjective-
value encoding pattern, this model included binary predictors based on

the subjective value of the lottery. For each participant, we separated all
trials into risky and ambiguous ones. Within each uncertainty domain, we
grouped loss trials into 3 bins of equal number of trials; we grouped gain
trials into 3 bins in the same way. Bins for gains and losses were roughly
symmetric, with the following mean normalized subjective values:
Losses–Bin 1: −1.19 ± 0.07; Bin 2: 0.26 ± 0.09; Bin 3: 0.93 ± 0.13; Gains–Bin
4: −0.94 ± 0.13; Bin 5: -0.24 ± 0.10; Bin 6: 1.18 ± 0.06. We then constructed a
binary predictor for each bin as a box-car function with the duration of
choice display (6TR). Altogether this GLM included 12 predictors (2
uncertainty domains × 2 gain/loss domain × 3 bins) representing the levels
of subjective values.
In all GLMs, we additionally modeled the choice response by a binary

predictor with the duration of 1TR at the time of button press. We included
nuisance predictors of 6 motion correction parameters (translation and
rotation in the x, y, and z directions) to account for influence of head
motions on the neural activity.
In the second-level analysis, random-effect group analysis was

conducted to test whether the predictor effects were related to the
severity of PTSD, both in a whole-brain search and in regions of interest
(ROIs). All whole-brain statistical maps were thresholded at p < 0.001 per
voxel, and corrected for multiple comparisons using cluster-extent
correction methods through alphasim implemented by Neuroelf (which
is not subject to issues of AlphaSim from AFNI raised by Eklund et al. [26])
to control for family-wise error (FWE) rate at 0.05. External ROIs of vmPFC
and ventral striatum were chosen based on the meta-analysis by Bartra
et al. [27]. The vmPFC and ventral striatum were the only two areas
identified in the meta-analysis as encoding subjective value both during
the decision and the outcome phase, across different domains, and are
considered as a “common currency” valuation areas. Further statistical
analyses and visualization were conducted in R (Version 3.5.1) [28] with
packages ez [29], psych [30], nlme [31], emmeans [32], ggplot2 [33], and
PerformanceAnalytics [34].
To account for effects of demographic factors that might affect people’s

attitudes in financial decision making (age, income, education, and
intelligence) and model-fitting quality (Bayesian Information Criterion, BIC)
we conducted multi-factor ANOVAs through a Generalized Linear Model:
behavioral attitude or neural encoding of subjective value (GLM beta) ~

CAPS total+ age+ income (categorical)+ education (categorical)+ intelli-
gence+ BIC
Following our finding of a negative relationship between CAPS total score

and vmPFC general activity, identified by the whole-brain analysis (see
Results), we fitted a linear model including all five symptoms based on CAPS
together with age and intelligence:
Averaged GLM beta over all four decision conditions ~ re-experiencing+

avoidance+ emotional numbing+ dysphoric arousal+ anxious arousal+
age+ intelligence
We then conducted variable subset selection to identify which symptom

cluster(s) best influenced vmPFC neural activity, using exhaustive search
through the package “leaps” [35] in R. We compared regression models
including all possible combinations of variables for each given number of
predictors of this linear model (ranging from including only one predictor to
including all seven predictors), and selected the best model with the lowest
BIC. The best linear model identified by this exhaustive approach could
identify both the best number of symptom clusters to include, and which
symptom cluster(s).

RESULTS
Behavioral results
CAPS total score was associated with increased aversion to
ambiguity when choosing between losses (Spearman’s
ρ(55)=−0.30, p < 0.05, Fig. 2C). PCL-5 scores, which were more
variable among those with a CAPS score of zero, showed a similar
association (Pearson’s r(56)=−0.31, p < 0.05). CAPS total and PCL-
5 scores were also associated with increased risk aversion in the
gain domain (CAPS: Spearman’s ρ(55)=−0.39, p < 0.01; PCL-5:
Pearson’s r(56)=−0.36, p < 0.01). These correlations remained
significant after controlling for age, income, education, intelli-
gence and model-fitting quality indicated by BIC (multi-factor
ANOVA by GLM: CAPS total’s effect on ambiguity attitude in losses:
F(1, 41)= 6.05, p < 0.05; CAPS total’s effect on risk attitude in gains:
F(1, 41)= 12.5, p < 0.01). CAPS total score was not associated with
ambiguity attitude in the gain domain (Spearman’s ρ(55)=−0.03,
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Fig. 2 Participants’ symptom severity and behavior. A Distribution of CAPS total score of participants included in the behavioral analysis,
colored by group (combat veterans with or without PTSD diagnoses). One PTSD participant included in the analysis did not have complete
CAPS data. B PTSD, depression and anxiety symptom severities were highly correlated. Numbers in the upper right panels indicate pair-wise
Pearson correlation coefficients. Significance levels: ***p < 0.001; **p < 0.01; *p < 0.05. Lower left panels show pairwise scatter plots and
smoothed curves using locally weighted polynomial regression. Panels in the diagonal show distributions and density curves for each
measure. Labels of measures: CAPS-ReExp: re-experiencing, CAPS-Avoid avoidance, CAPS-Numb numbing, CAPS-DysA dysphoric arousal,
CAPS-AnxA anxious arousal, BDI Beck Depression Inventory, STAI-1 State Anxiety, STAI-2 Trait Anxiety, DES Dissociative Experiences Scale, CES
Combat Exposure Scale, CTQ Childhood Trauma Questionnaire. C Correlation between overall PTSD symptom severity (CAPS total) and
attitudes under four decision conditions. PTSD symptom severity was negatively correlated with ambiguity attitude in losses and risk attitude
in gains. One participant was not included in the analysis due to missing CAPS. All attitudes were transformed such that negative numbers
indicate aversion to risk or ambiguity, and positive numbers indicate seeking.
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p= 0.82), nor with risk attitude in the loss domain (Spearman’s
ρ(55)= 0.11, p= 0.41).
To account for potential effects of other clinical and trauma-

exposure measures we conducted Principal Component Analysis
(PCA) on the clinical measures, together with combat exposure
(CES) and childhood trauma (CTQ). The first three components
accounted for around 80% of the variance. The first component was
affected by all clinical symptoms, and may reflect a general affective
factor. This component was highly consistent with PTSD symptom
severity (correlation with CAPS Spearman’s ρ(53)= 0.94, p < 0.001;
Only 55 participants were included in PCA due to incomplete
clinical data, see Methods: Participants and clinical assessment
section). Components 2 and 3 represented deficit in fear learning-
updating and trauma respectively, and were not strongly correlated
with CAPS total (Component 2: Spearman’s ρ(53)= 0.11, p= 0.43;

Component 3: Spearman’s ρ(53)= 0.029, p= 0.84). Similar to CAPS
total, principal component 1 correlated with ambiguity attitude in
losses (Pearson’s r(53)=−0.29, p < 0.05) and risk attitude in gains
(Pearson’s r(53)=−0.35, p < 0.01). Principal components 2 and 3
were not related to any model-fitted attitude. Thus, our neural
analysis focused on the CAPS.

fMRI results
In a whole-brain analysis, we first searched for brain areas in which
the magnitude of neural activation during the valuation phase
(GLM 1, see methods) was modulated by PTSD symptom severity.
The only region identified in this analysis was the vmPFC—a
central component of the valuation network; activity in this region
was negatively correlated with CAPS total (p < 0.001, cluster-based
corrected, Fig. 3A), during the second session of the task. This

Fig. 3 Reduced vmPFC activity during valuation is related to PTSD symptom severity. A A whole-brain analysis revealed that activity in
vmPFC during valuation was negatively correlated with CAPS total score, regardless of decision condition. B Visualization of this negative
correlation between general activity in the vmPFC and CAPS total score in each decision condition. C Emotional numbing symptom severity
drove the negative relationship between vmPFC neural activity and PTSD symptom severity, revealed by a linear regression model on the
vmPFC activity including all clusters of the 5-factor model of CAPS. D Variable selection using exhaustive search also indicated that emotional
numbing was the key symptom driving this relationship. Each row of the graph shows the selected variables (shaded) for the best model with
a given number of predictors. Rows are ranked and colored by BIC. The top row represents the best model, which includes only Emotional
numbing as the predictor, among all possible combinations of predictors.
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negative relationship was consistent across all four decision
contexts (Fig. 3B; risky gains: Spearman’s ρ(45)=−0.45, ambig-
uous gains: Spearman’s ρ(45)=−0.45, risky losses: Spearman’s
ρ(44)=−0.45, ambiguous losses: Spearman’s ρ(44)=−0.33). Of
the 5 factors of PTSD, only emotional numbing significantly

contributed to the negative association (standardized regression
coefficient, Beta=−0.72, t=−2.32, p < 0.05, Fig. 3C). Age and
intelligence did not significantly influence vmPFC activity (Age:
Beta=−0.14, t=−1.13, p= 0.26; intelligence: Beta=−0.044,
t= 0.33, p= 0.75). Variable selection using exhaustive search also
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indicated that including only the emotional numbing cluster best
explained this negative correlation (Fig. 3D, BIC= 112.8).
The modulation of vmPFC activity by PTSD symptoms is

consistent with our hypothesis of alterations in the neural valuation
system in PTSD. We proceeded with an exploratory analysis to
directly investigate the neural encoding of subjective value in this
area (GLM 2), and in the ventral striatum, another core area of the
valuation system [27]. For unbiased analysis, we defined the ROIs
externally, based on a meta-analysis of value-related areas [27].
CAPS total was positively correlated with the subjective-value signal
of risky gains in vmPFC (Fig. 4A, Spearman’s ρ(46) with CAPS= 0.31,
p < 0.05), and was negatively correlated with the subjective-value
signal of ambiguous losses in ventral striatum (Fig. 4B, Spearman’s
ρ(46) with CAPS=−0.35, p < 0.05).
These subjective-value signals were not significantly affected by

age, income, education or intelligence. Controlling for these factors,
the effect of CAPS on the subjective-value signal of ambiguous
losses in ventral striatum remained significant (multi-factor ANOVA
by GLM: F(1, 33)= 6.01, p < 0.05); the effect on risky gains in vmPFC
was marginally significant (F(1, 33)= 3.53, p= 0.069). CAPS total
was not significantly associated with subjective value signals of
other types of decisions-making in these two ROIs (Fig. 4A, B).
The ventral striatum result is especially interesting: PTSD

symptoms were associated not just with the strength of
subjective-value encoding, but also with its direction. While
participants with low CAPS total score encoded these values in
a positive manner (increasing activity for decreasing loss), those
with high symptoms encoded the same values in a negative
manner (increasing activity for increasing losses). This raises the
possibility that in PTSD the saliency of ambiguous options (how
important they are), is encoded in the striatum, rather than their
value (how good or bad they are). To directly test this possibility
we divided our participants into two groups (PTSD and controls),
based on CAPS (Table 1). We then computed value and saliency
signals (GLMs 3 and 4) in the ventral striatum, averaging across
the PTSD and control groups. In controls (Fig. 4C, green), this area
significantly encoded value (one-sample t test GLM beta
compared with 0, t(28)= 3.4, p < 0.01), but not saliency
(t(28)=−0.62, p= 0.54). Conversely, in veterans with PTSD
(Fig. 4C, orange) ventral striatum activity encoded saliency
(t(18)= 2.7, p < 0.05), but not value (t(18)= 0.99, p= 0.45; all p
values were fase discorrvery rate (FDR) corrected for four
comparisons). Furthermore, the saliency-encoding patterns were
significantly different between veterans with PTSD and combat
controls (two-sample t-test: t(39.3)=−2.5, p < 0.05). Figure 4D
presents a visualization of the shape of value- and saliency-
encoding in ventral striatum (GLM 5). As expected, combat
controls showed a monotonic representation of subjective value,
whereas veterans with PTSD showed a U-shaped representation.

DISCUSSION
This study is the first, to our knowledge, to examine the neural
encoding of subjective values of monetary gains and losses in

individuals with trauma-related symptomatology. Our results add to
a growing body of research demonstrating the utility of neuroeco-
nomics in studying psychopathology [36–40]. Using a behavioral-
economics task in conjunction with fMRI, we revealed diminished
activity in vmPFC, associated with greater severity of PTSD
symptoms (Fig. 3A). This effect was mainly driven by emotional
numbing/anhedonia symptoms, indicating a general effect of
affective symptoms that could be relevant to other types of mood
disorders in addition to PTSD due to its transdiagnostic nature.
Further analysis identified a potential shift from value-encoding

to saliency-encoding in the ventral striatum in combat veterans
who developed PTSD following trauma exposure. While in combat
controls, activity in this brain region decreased as the potential for
ambiguous losses increased, in individuals with PTSD the opposite
pattern was observed: increasing potential losses led to increased
activity (Fig. 4D). This may reflect elevated arousal, which in turn
can lead to avoidance of aversive outcomes. Previous work has
revealed distinct value and saliency representations in various
brain areas, including parietal cortex, orbitofrontal cortex (OFC),
anterior cingulate cortex (ACC) and insula [41–48]. In the ventral
striatum, research in the general population has identified
overlapping representations of both value and saliency;[45, 48]
our results point to a potential effect of stress on these
representations. Interestingly, recent research in mice shows a
similar reversal in representation, where acute stress transforms
reward responses in the lateral habenula into punishment
responses [49]. Neurons in the nucleus accumbens of rats can
also flexibly shift their preferences between rewards and punish-
ments, based on the emotional environment [50], suggesting that
what we observed in the current study may partly reflect a stress
coping mechanism.
Our results also revealed an association between increased

vmPFC sensitivity to expected rewards and PTSD symptom
severity (Fig. 4A). While previous human fMRI studies reported
blunted neural activation to monetary rewards in PTSD [10, 11], it
should be noted that in those studies reward signals were defined
as the difference in activation to gains and losses. A weaker
contrast in individuals with PTSD could stem from a weaker
reward signal, but also from a stronger punishment signal,
consistent with a U-shaped saliency representation, as we report
here. Reduced activation to rewards in individuals with PTSD has
been previously observed in comparison to controls who were not
exposed to trauma [10]. An intriguing possibility is that the strong
neural tracking of saliency is a marker for vulnerability to PTSD,
reflecting increased sensitivity to highly salient stimuli while
ignoring other information which might be as important but not
as salient. The value signal in combat controls, on the other hand,
may be a marker of resiliency to PTSD. Further research,
particularly longitudinal studies that compare individuals exposed
to trauma to those who never experienced trauma, are needed to
explore this possibility. It should also be noted that the finding of
a shift from value- to saliency- encoding is exploratory, with a
weak effect revealed in a small sample of male combat veterans.
Future studies with larger samples and other types of trauma

Fig. 4 Neural subjective-value signals in external ROIs of vmPFC and ventral striatum were related to PTSD symptom severity.
A, B Correlation between PTSD symptom severity (CAPS total) and subjective-value signals of the four types of lotteries in vmPFC (A) and
ventral striatum (B). These two external ROIs were taken from Bartra and colleagues’ meta-analysis study [27]. C In ventral striatum, value-
encoding of subjective values was observed in combat controls but not in veterans with PTSD; saliency-encoding of subjective values was
observed in veterans with PTSD but not in combat controls. Comparisons with zero for both PTSD and Control group were FDR-corrected
across four comparisons in the two figures. Significance level: *p < 0.05; **p < 0.01. D Direct qualitative visualization of neural response to trials
of ambiguous lotteries with different levels of subjective values in ventral striatum. Bins were ordered monotonically based on participant-
specific subjective values of the lotteries across losses and gains. Bins 1–3 were loss lotteries, and bins 4–6 were gain lotteries. Consistent with
A, combat control veterans encoded subjective value in a monotonic value-pattern, and veterans with PTSD encoded subjective value in a
U-shaped saliency-pattern. ROI of ventral striatum was taken from Bartra and colleagues’ meta-analysis study [27]. All error bars indicate
standard errors.
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exposure, in both men and women, should further confirm this
difference and explore its relationship to variability in trauma
exposure.
Our design consisted of uncertain gains and losses. Under-

standing how combat soldiers respond to uncertainty is especially
important because they face highly uncertain and uncontrollable
life-threatening events [51], which may result in serious injury to
themselves or death of teammates. Individual attitudes towards
uncertainty and the capacity to handle uncertainty may affect
one’s ability to evaluate and cope with potentially traumatic
events and/or its sequelae. The notion of uncertainty has been
widely incorporated in studies of fear-learning in PTSD [5, 52],
where participants encountered probabilistic deliveries of adverse
outcomes and their ability to predict these outcomes was
measured. These studies found marked differences between PTSD
and controls [5]. We further expanded the investigation and
moved from a passive task (fear learning) to an active choice
paradigm, that tested individuals’ tolerance to uncertainty in both
the negative and the positive domains. We show that activation in
the same brain areas identified by fear and trauma-related stimuli
[1] were affected by PTSD symptoms even in an economic
decision making task, completely unrelated to the trauma.
One concern in our investigation of neural representation is that

the range of subjective values was lower in PTSD because of their
higher aversion to uncertainty, which could influence the
sensitivity of the neural response to value differences. It should
be noted, however, that our main conclusion is based on a
difference in the direction of correlation (negative vs. positive),
rather than in the magnitude of slope of the correlation. This
represents a substantial difference in the shape of subjective-value
encoding and would not be affected by group difference in the
range of subjective values.
Our study cannot point to a causal direction. Heightened neural

sensitivity to uncertain salient stimuli may predispose the
individual to PTSD, or PTSD symptoms may lead to altered neural
sensitivity. Further longitudinal studies comparing veterans pre-
and post- military service are needed to help disentangle the role
of pre-existing value sensitivity on the development of PTSD from
the subsequent impact of PTSD symptomatology on value
sensitivity. Overall, our effort to study PTSD using neuroeconomics
approaches, together with studies on stress [53] and other types
of psychiatric disorders (including obsessive compulsive disorder
[37], antisocial personality disorder [38], and substance use
disorders [39]), could collectively lead to both early identification
of behavioral and biological risk factors for symptom develop-
ment, and more effective treatments.

CODE AVAILABILITY
Behavioral data analysis and generating design matrices for imaging analysis:
https://github.com/LevyDecisionNeuroLab/VA_PTB_Analysis-Scripts. Imaging
secondary-level and further analysis: https://github.com/LevyDecisionNeuroLab/
VA_RA_PTB_imaging_analysis_scripts.
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