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On returning from combat, why do some military personnel 
develop symptoms of PTSD and others do not? PTSD symp-
toms may develop after exposure to a traumatic event and are 

characterized by symptoms of re-experiencing, avoidance of trauma 
reminders, negative alterations in cognitions and mood, and altera-
tions in arousal and reactivity1–3. A prominent learning theory sug-
gests that PTSD symptoms largely reflect maladaptive associative 
learning during and after a traumatic event4. Associative learning of 
threat5 is the process by which benign stimuli such as people, loca-
tions, and objects (that is, conditioned stimuli) acquire threatening 
properties through pairing with an aversive outcome, and have the 
capacity to trigger and maintain defensive responses well after the 
aversive event is decoupled from the conditioned stimuli. Although 
abnormal threat conditioning features prominently in theoretical 
accounts of PTSD, the manner in which learning becomes dysfunc-
tional is less clear4.

Accumulating evidence suggests a variety of impaired learning 
processes in PTSD, including overgeneralization, heightened con-
textual anxiety, diminished inhibition in response to safety cues, 
and failure to retain extinction learning4. These findings link PTSD 
to basic learning processes, but they do not disambiguate specific 
aspects of learning that may contribute to the disorder, such as the 
learning rate or the computation of aversive value. It is possible that 
PTSD-related abnormalities are influenced by learning parameters 
that we cannot directly observe, but are able to infer from observ-
able behavior. Computational indices, which estimate such latent 
learning parameters, may be able to detect such differences.

Theories of associative learning, such as the Pearce–Hall learn-
ing mechanism6, envision that learning cue-outcome associations 

involves tracking of several quantities: prediction errors for rein-
forcement, which occur when the outcome is more or less than 
expected (that is, surprising), and associability, reflecting the extent 
to which each cue has been previously accompanied by surprise. 
The value assigned to cues in the environment is revised in each 
encounter based on the prediction error. Associability dynamically 
guides value learning by accelerating it to cues whose predictions 
are poor (large prediction errors), and decelerating it when predic-
tions become reliable. Here, we used a hybrid version of the Pearce–
Hall learning model to estimate the computations performed during 
associative threat learning7–9 and how the behavioral and neural 
tracking of these computations relate to PTSD symptom severity.

To cover the full spectrum of symptomatology, we recruited 
54 combat-exposed veterans with a wide range of PTSD symp-
toms based on the gold-standard structured clinical interview for 
PTSD, the Clinician-Administered PTSD Scale (CAPS; Table 1 and 
Supplementary Fig. 1). Twenty-four participants had a diagnosis of 
PTSD and 30 participants were combat veteran controls without 
PTSD diagnosis. We used the threat reversal paradigm—where flex-
ible updating of threat responses is required—together with com-
putational modeling, to uncover latent learning parameters that are 
relevant for the symptomatology.

We expected that the observed threat learning behavior would 
be similar across different levels of symptoms (reflecting the unspe-
cific and subtle aberrations found in threat response conditioning 
in PTSD in general10,11) but that the underlying neural computations 
might reveal disease-related differences.

The amygdala is a locus of associative learning in the brain7,12, 
and previous work has linked PTSD symptoms with abnormal 
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amygdala structure13, as well as heightened amygdala reactivity to 
stimuli laden with emotionally negative content14,15. Our goal here 
was thus to examine whether the structural and functional imple-
mentations of specific learning computations in the amygdala relate 
to PTSD symptoms, and whether the threat learning-related func-
tion and volume of the amygdala contribute to PTSD symptoms in 
a complementary manner.

The experiment began with an acquisition phase, in which two 
visual stimuli (mildly angry faces) were presented consecutively in a 
pseudorandomized order. One of the stimuli was paired with a mild 
electric shock on one-third of the trials (face A), while the other 
was never paired with the shock (face B). The acquisition phase was 
immediately followed by a reversal phase, in which the contingen-
cies were flipped such that the formerly neutral stimulus (face B) 
was now paired with a shock and face A became the neutral stimu-
lus (Fig. 1a). Skin conductance response (SCR) served as the index 
of conditioned defensive responses.

Results
Irrespective of symptoms, veterans show successful reversal 
learning. Combat-exposed veterans (N =​ 54 participants) success-
fully acquired and reversed threat conditioning, as assessed by the 
differential SCR (face A versus face B) in the two phases of the task 
(Fig. 1b). To test for a potential relationship between threat reversal 

and PTSD symptoms, we used a linear regression with threat rever-
sal index as predictor and CAPS scores as the outcome. Reversal 
index was calculated by subtracting stimulus discrimination in 
reversal (that is, face A minus face B) from stimulus discrimination 
in acquisition (Fig. 1b). Controlling for irrelevant variables (age and 
gender), the regression revealed no significant relationship between 
symptoms and reversal learning (β =​ 0.02, t(50) =​ 0.13, two-tailed, 
P =​ 0.894). We also did not find evidence that PTSD symptoms were 
related to stimulus discrimination during threat acquisition only 
(β =​ 0.03, t(52) =​ 0.22, two-tailed, P =​ 0.827) or during the reversal 
phase only (β =​ 0.02, t(52) =​ 0.12, two-tailed, P =​ 0.901). Additional 
ways of categorizing veterans as highly and mildly affected did not 
reveal any significant results (see Methods, ‘Sample characteristics’). 
These results motivate the use of a computational approach that 
could potentially reveal latent learning differences across individu-
als exposed to combat trauma.

Pearce–Hall hybrid model best describes conditioned threat 
responses. To estimate parameter weights for the specific com-
putations performed during associative threat learning7–9 and 
how they relate to PTSD symptom severity, we used a hybrid 
Rescorla–Wagner and Pearce–Hall model, which we have previ-
ously employed with the same task in healthy participants7,8. The 
computational model was informed by the Pearce–Hall learning  

Table 1 | Sample characteristics

Characteristic N Mean s.d.

Males 49

Females 5

Age 54 32.8 8

Education 51 3.7 1.2

ASI 52 20.7 13.3

BDI 53 16 13.3

CAPS 54 39.2 32

CES 51 16.8 6.5

STAIS 49 40.8 13.7

Medicated 18

Comorbidities:

MDD 17

Past alcohol abuse 7

Panic disorder 5

Past cannabis abuse 4

Generalized anxiety 3

Social phobia 3

Anxiety disorder NOS 2

Adjustment disorder 1

Anxiety disorder GMC 1

Dysthymic disorder 1

Other DSM-IV Axis I disorder 1

Past cocaine abuse 1

Past opiates abuse 1

Specific phobia 1

Education was a categorical variable, defined as: 1, 8th grade or less; 2, some high school; 3, high 
school graduate or General Education Diploma; 4, some college; 5, college graduate; 6, advanced 
graduate degree. Abbreviations: ASI, Anxiety Sensitivity Index; BDI, Beck Depression Inventory; 
CES, combat exposure score; STAIS, State Anxiety subscale of the Spielberger State-Trait Anxiety 
Inventory; MDD, major depressive disorder; NOS, not otherwise specified; GMC, due to  
general medical condition; s.d., standard deviation; DSM, Diagnostic and Statistical Manual  
of Mental Disorders.
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Fig. 1 | Experimental overview a, Experimental design. The experiment 
consisted of 69 trials and a reinforcement rate of 33%. Stimuli were 
presented for 4 s in two pseudorandomized orders, followed by an intertrial 
interval of 12 s. During acquisition, face A was paired with a shock in about 
one-third of the trials and face B was not paired. Reversal started after 30 
trials without previous instructions or warnings. During reversal, face B 
was now paired with a shock in about one-third of the trials, whereas face 
A was not paired anymore (ITI, intertrial interval). b, Time course of threat 
reversal learning. Mean normalized SCRs with standard errors (N =​ 54 
participants). Participants showed successful threat reversal, indicated 
by a significant interaction of stage by stimulus; that is, a reversal index 
(subtracting stimulus discrimination (face A—face B) in reversal from 
stimulus discrimination in acquisition) with 95% confidence intervals 
that is significantly different from zero in a one-sample t test, two-sided 
(t(53) =​ 4.75, P <​ 0.001).

Nature Neuroscience | VOL 22 | MARCH 2019 | 470–476 | www.nature.com/natureneuroscience 471

http://www.nature.com/natureneuroscience


Articles NaTUre NeUroScience

mechanism for associability-gated learning6. Like the classic 
Rescorla–Wagner model16, the hybrid model updates the value of 
each cue on each presentation of that cue, based on the discrep-
ancy between the expected and obtained outcome, or the pre-
diction error. The hybrid model, however, replaces the constant 
learning rate of the Rescorla–Wagner model by a dynamic asso-
ciability parameter6. Associability reflects the attention that a cue 
receives on the basis of how accurately it has predicted outcome 
in the past. Unreliable cues receive more attention (higher asso-
ciability) as they are likely to be unreliable in the future; and since 
they are unreliable, they should be updated preferentially as new 
information becomes available17 (see Supplementary Material for 
details and for simulated parameter recovery as well as model fits 
and Supplementary Figs. 2 and 3).

First, to verify the suitability of the model, we conducted model 
comparison between several versions of reinforcement learn-
ing models. Using hierarchical Bayesian modeling we fitted three 
different versions of this hybrid model to the SCR data; all three 
outperformed the simpler Rescorla–Wagner model (deviance infor-
mation criterion, DIC: 6003.91). In addition, the hybrid model with 
associability (α) and an additional predictor for value (V) updating 
(DIC: 2630.37) outperformed the models with either value alone 
(DIC: 2678.75) or associability alone (DIC: 2661.6) and was thus the 
winning model (Fig. 2a). There was no evidence that an additional 
scaling parameter for the reversal stage (reflecting a different pre-
diction-error weight for the reversal stage) improved the model fit 
(DIC: 2772.27). Notably, similar results were obtained when using 
maximum likelihood estimation (MLE) as in a previous study (ref.8; 
see Supplementary Material for details and Supplementary Fig. 4). 
These findings indicate that the recorded SCRs during reversal 
learning reflect value expectations modulated by cue-specific atten-
tion. Next, we used this winning hybrid (α +​ V) model to examine 
whether learning parameters that describe behavior and neural 
activity relate to PTSD symptom severity.

Symptomatic veterans assign higher weights to prediction errors. 
To understand how the model computations relate to overt PTSD 
symptoms, we used the best-fit model parameters. In the winning 
hybrid model, the prediction-error weight η, which can be seen as 
a learning rate for associability, is a quantity estimated for each par-
ticipant from the SCR. The prediction-error weight quantifies how 
much weight is assigned to wrong predictions when updating trial-
by-trial associability. It is possible that more symptomatic combat 

veterans would be more sensitive to prediction errors, and will 
assign higher weights to them. Indeed, we found that higher pre-
diction-error weight was associated with higher CAPS symptoms 
(β =​ 0.55, t(50) =​ 4.57, two-tailed, P <​ 0.001; Fig. 2b; note that this 
association held up when using a non-parametric rank correlation 
test that is more robust to outliers, see Supplementary Material). 
This finding suggests that highly symptomatic combat veterans 
were more influenced by prediction errors, weighing them more 
strongly as they adjusted trial-by-trial attention to cues.

Symptomatic veterans show altered amygdala value computa-
tion. During the reversal task, the value assigned to each cue is 
continuously updated on the basis of associability-gated prediction 
error. Mathematically, a value in a current trial reflects the value 
in the previous trial plus prediction error multiplied by associabil-
ity. Associability in each trial is updated by the weighted predic-
tion error in the previous trial (see Supplementary Material for 
details). As reported above, the prediction error weight was posi-
tively associated with PTSD symptoms. As the weighted prediction 
error shapes value, we next examined whether the neural tracking 
of value related to PTSD symptoms.

We focused our neural investigation on the amygdala, given its 
role in associative learning7,12, value encoding18–21, and evidence 
linking PTSD symptoms with heightened amygdala reactivity to 
emotionally negative stimuli14,15. Given that amygdala morphology 
has also been linked with stress-related psychopathology13,22, we 
examined whether amygdala neural computations and morphol-
ogy are different manifestations of the same source problem (that 
is, redundant) or whether they incrementally explain variance in 
PTSD symptoms.

To address this, we calculated linear regression models includ-
ing functional (value encoding based on the winning hybrid 
model) and structural indices for amygdala as predictors of the 
PTSD symptoms (for a similar analysis using the classic Rescorla–
Wagner model, see Supplementary Figs. 5–7). To account for 
unspecific intersubject variability, these models were adjusted for 
age, gender, head movement and total intracranial volume (see also 
Supplementary Material). We found a structure-function relation-
ship with CAPS in the right amygdala (Fig. 3a), where both volume 
(β =​ −​0.52, t(47) =​ −​2.7, two-tailed, P =​ 0.01); Fig. 3b) and neural 
activity (β =​ −​0.29, t(47) =​ −​2.02, two-tailed, P =​ 0.049; Fig. 3c) 
independently predicted the total CAPS score. In the left amyg-
dala, the effect of value-dependent activity remained significant 
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Fig. 2 | Computational model comparison and relationship to PTSD symptoms. a, All three versions of the hybrid model informed by the Pearce–Hall 
learning mechanism outperformed the simpler Rescorla–Wagner (RW) model. In addition, the hybrid model with associability and value outperformed the 
models with either value only or associability only and was thus the winning model (indicated with an asterisk). An extension of the Rescorla–Wagner or 
hybrid model with a scaling parameter ϱ (rho) for the reversal stage, reflecting the potential change of learning during the reversal stage, did not perform 
better than the hybrid model with alpha, (associbaility), and V (value), which we thus kept as the winning model. b, Prediction-error weight η predicts 
symptoms as assessed with the CAPS. Using the best-fit model parameters, we found that a higher prediction-error weight η (which captures the learning 
rate for associability) predicted more CAPS symptoms. A partial correlation is shown after adjustments for age and gender and a Pearson correlation 
coefficient with a two-tailed significance test. Error shadings correspond to standard errors. adj., adjusted for all other parameters in the model; ***P <​ 0.001.
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when including amygdala volume in the same model (β =​ −​0.34, 
t(47) =​ −​2.34, two-tailed, P =​ 0.024; Fig. 3d), but no independent 
effect for volume emerged (β =​ −​0.25, t(47) =​ −​1.27, two-tailed, 
P =​ 0.211).

We verified that the findings were comparable when restricting 
the study sample to the male participants and when using non-
parametric rank correlations (see Supplementary Material). We also 
confirmed that individual differences in right amygdala volumes 
did not affect the effect of neural activity on CAPS symptoms (see 
Supplementary Material and Supplementary Fig. 8).

To further characterize the relationship between structure and 
function we added the interaction term to the model and found that 
there was no evidence for a synergistic effect between these inde-
pendent variables (right amygdala: β =​ −​0.95, t(46) =​ −​0.88, two-
tailed, P =​ 0.385; left amygdala: β =​ −​0.91, t(46) =​ −​0.78, two-tailed, 
P =​ 0.437). However, the correlation between structure and function 
(adjusting for total head volume) was significant and negative (right 
amygdala: β =​ −​0.39, t(49) =​ −​2.11, two-tailed, P =​ 0.04; left amyg-
dala: β =​ −​0.39, t(49) =​ −​2.13, two-tailed, P =​ 0.038). A possible 
explanation is a compensatory recruitment of amygdala neurons in 
veterans with smaller amygdala volumes, probably due to a stress-
related gray matter reduction23.

To fully characterize the brain-behavior relationship with respect 
to symptoms, we tested whether individual differences in predic-
tion-error weights were associated with differences in amygdala 
volume. We entered the prediction-error weight (η) as an outcome 
measure into a linear regression and used amygdala volume as 
predictor, including additional regressors for age, gender and total 
intracranial volume. We did not find evidence that right amygdala 
volume (β =​ −​0.22, t(49) =​ −​1.14, two-tailed, P =​ 0.26) or left amyg-
dala volume (β =​ −​0.19, t(49) =​ −​1, two-tailed, P =​ 0.321) were asso-
ciated with prediction-error weight.

In addition to value computation, the winning hybrid model also 
captures prediction error and associability, both of which are associ-
ated with amygdala neural activity8,9,17. Since they are not strongly 
correlated in the hybrid model8,24, they can be assessed separately 
(see also Supplementary Material and Supplementary Fig. 9). We 
therefore computed a second general linear model (GLM) with 
trial-by-trial regressors for associability, shock occurrence, and 
prediction error, all of which were parametric modulators of cue 
offset, as this is the time point when prediction error and associa-
bility are computed. We expected that tracking of associability in 
the amygdala8,17, reflecting the proposed attention-gating role of this 
brain region, would be attenuated by PTSD symptoms. However, we 
did not find evidence for a relationship between amygdala neural 
activity and PTSD symptoms for either associability (left: β =​ −​0.14, 
t(47) =​ −​1.01, two-tailed, P =​ 0.316; right: β =​ −​0.06, t(47) =​ −​
0.43, two-tailed, P =​ 0.667) or prediction error (left: β =​ −​0.03,  
t(47) =​ −​0.2, two-tailed, P =​ 0.839; right: β =​ 0.04, t(47) =​ 0.28, two-
tailed, P =​ 0.781), suggesting that amygdala value encoding contrib-
utes to the symptoms of PTSD, whereas associability and prediction 
error were less influential.

All together, these findings show that lower neural tracking of 
value in the amygdala, in addition to smaller amygdala volumes, 
corresponded to higher PTSD symptom severity.

Additional brain regions tracking threat computations. The 
striatum, the hippocampus and the dorsal anterior cingulate cortex 
(dACC) have also been implicated in the computations related to 
threat learning8,9,25. We extended our analysis to these brain regions 
and tested whether neural tracking of value, associability and pre-
diction error in these regions correlated with PTSD symptoms. 
Using a linear mixed model with brain region and CAPS as fac-
tors and neural value computations as an outcome, we found a main 
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encoding. a, Region of interest (ROI) used in the computational imaging analysis. The amygdala (red) was defined functionally, using the contrast of 
conditioned stimuli (both CS+​ and CS–) versus baseline. b–d, Amygdala volume and value-dependent neural activity independently contribute to PTSD 
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effect of CAPS (F(1, 52) =​ 5.49, P =​ 0.023) as well as an interaction of 
brain region and CAPS (F(2, 104) =​ 3.14, P =​ 0.047), driven by sig-
nificant negative correlations between value tracking in the striatum 
(Fig. 4). These results suggest that, similar to amygdala, lower value 
tracking in the striatum (but not hippocampus or dACC) relates to 
higher symptom severity.

To test for a relationship between PTSD symptoms and neural 
tracking of associability and prediction error in these regions, all of 
which have been implicated in prediction error26,27 and assocabil-
ity9,25,28,29 encoding, we computed a linear mixed model with brain 
region, learning component and CAPS as factors, and neural activ-
ity as the dependent variable. We found an interaction of learning 
component and CAPS (F(1, 208) =​ 20.43, P <​ 0.001), driven by nega-
tive correlations between neural tracking of associability and CAPS 
that were attenuated for prediction error in all three regions (Fig. 4).  
We confirmed that these findings for value, associability and pre-
diction-error computation were robust to the gender imbalance, 
clinical heterogeneity and medication status (see Supplementary 
Material). We also verified that the correlations were present when 
testing for non-parametric rank correlations. These results indicate 
that the lower tracking of associability (and less so of prediction 
error) in the striatum, hippocampus and dACC relate to higher 
symptom severity.

Finally, to investigate a dissociation of associability and predic-
tion error in amygdala and striatum as reported in a previous study8, 
we tested for an interaction of region (amygdala, striatum) and 
learning component (associability, prediction error). To improve 

comparability between the current and the previous study, we ran 
this analysis only in veterans without a diagnosis of PTSD, and 
found no evidence for dissociation (F(3, 203) =​ 0.58, P =​ 0.629). We 
also did not find evidence that the amygdala tracked associability in 
the current study in veterans without PTSD.

The absence of a dissociation that was found in a previous study8 
merits an explanation. First, it is noteworthy that the current study 
does replicate the computational results of the previous study8, 
namely the superiority of the hybrid model over the Rescorla–
Wagner model. On the neural level, the previous study found an 
interaction of region (amygdala, striatum) and learning component 
(associability, prediction error) that had a medium to large effect 
size (Cohen’s d =​ 0.66, 95% confidence interval (CI): 0.12; 1.17, 
t(16) =​ 2.71, one-sample t-test, two-tailed, P =​ 0.02). In the current 
study, we found that this interaction was not significant (Cohen’s 
d =​ −​0.13, 95% CI: −​0.49; 0.23, t(29) =​ −​0.7, one-sample t test, two-
tailed, P =​ 0.49). Rather, the striatum, but not amygdala, tracked 
associability in addition to tracking prediction error.

Several factors could explain this result. First and foremost, the 
current study’s population was exposed to combat trauma, therefore 
meeting criterion A (exposure to a traumatic event) in the clini-
cal assessment of PTSD symptoms and, in addition, was exposed to 
chronic stress associated with a deployment to combat zone. One 
may speculate that this traumatic stress (which has been shown 
to affect amygdala functioning13,22,30) may be the root cause for a 
shift in tracking from the amygdala to the striatum as part of brain 
plasticity. Second, the current sample differed significantly from the  
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previous sample in terms of gender ratio (M/F =​ 49/5 in the cur-
rent study versus 9/8 in Li and colleagues; P =​ 0.001) and age range 
(20–52 in the current study versus 18–31 in Li and colleagues8). 
Alternatively, given that we ran this analysis only in veterans with-
out a diagnosis of PTSD (N = 30), a lack of statistical power might 
have contributed to the non-replication.

Brain-behavior relationship. Prediction-error weights shape the 
computations of value and associability. The neural underpin-
nings of higher prediction-error weights, observed in the behavior 
of individuals with more PTSD symptoms, may therefore relate to 
computations of value in the amygdala and the striatum, as well 
as to computations of associability in the striatum, dACC and 
hippocampus. While PTSD symptoms correlated positively with 
prediction-error weights, however, they correlated negatively with 
the neural tracking of value and associability. To better understand 
these inverse relationships we conducted a mediation analysis. This 
analysis revealed that the correlation between prediction-error 
weight and CAPS was partially mediated by the tracking of asso-
ciability (but not prediction error) in the right striatum, as shown 
in the four steps of a mediation analysis (Fig. 5). We found that: (1) 
prediction-error weight positively correlated with CAPS (β =​ 0.54, 
t(52) =​ 4.62, two-tailed, P <​ 0.001); (2) prediction-error weight 
negatively correlated with neural activity (β =​ −​0.29, t(52) =​ −​2.22, 
two-tailed, P =​ 0.03); (3) neural activity negatively correlated with 
CAPS (β =​ −​0.43, t(52) =​ −​3.43, two-tailed, P =​ 0.001); and (4) 
prediction-error weight (eta) and neural activity independently 
predicted CAPS (eta: β =​ 0.45, t(51) =​ 3.89, two-tailed, P <​ 0.001; 
neural activity: β =​ −​0.3, two-tailed, t(51) =​ −​2.55, P =​ 0.014). 
Finally, we tested whether the difference between paths c and c’ was 
significantly different from zero. To maximize statistical power, we 
used non-parametric bootstrapping with 5,000 draws to derive an 
empirical null distribution. We found that the difference between 
the effect with the mediator present and the effect without it (paths 
c and c’; Fig. 5) was indeed significant (β =​ 0.09, 95% CI: 0.02; 0.2; 
P =​ 0.01). This result indicates that our mediation model supports a 
significant partial mediation.

This suggests that—at least for the right striatum and associa-
bility—both higher prediction-error weights and decreased neural 
tracking of associability are independently related to higher CAPS 
symptoms. Speculatively then, the higher weight assigned to predic-
tion errors might be a compensatory adjustment for the decreased 
neural tracking of associability. We did not find evidence that the 
neural tracking in any other region fully or partially mediated the 
relationship between prediction-error weights and CAPS.

Together, these findings indicate that the effect of higher pre-
diction-error weights in individuals with higher CAPS scores was 
complemented by decreased striatal activity during associability 
computation.

Discussion
The current study found that even highly affected combat veter-
ans were able to perform reversal learning when the SCRs were 
analyzed using conventional summary statistics. A more fine-
grained computational analysis, however, revealed that subtle dif-
ferences in latent learning components are at play: symptomatic 
veterans assigned more weight to prediction errors. An intuitive 
way of interpreting this result is in terms of attention. Highly 
affected individuals were more sensitive when their predictions 
about outcomes were wrong, and they exaggerated their adjust-
ment to the cues that did not predict what they had expected. 
This behavior may be associated with the increased aversion to 
ambiguous losses, which was recently observed in PTSD in the 
context of economic decision-making. Future research will need 
to determine the exact relationships between decision making 
under uncertainty, reinforcement learning, and post-trauma 
symptomatology31,32.

On the neural level, we found that the neural computations 
that were shaped by these altered prediction-error weights con-
tributed to the symptoms of PTSD: aversive value encoding in 
the amygdala and striatum, and associability computations in the 
striatum, dACC, and hippocampus. Our study further indicates 
that the right amygdala computations contribute to the symp-
tomatology above and beyond the effects of smaller amygdala 
volumes13, suggesting additive effects of right amygdala volume 
and function. A model-based functional magnetic resonance 
imaging (fMRI) analysis such as the one used in this study can 
therefore not only indicate where in the brain a certain task-
related activity emerges, but also which computations are prob-
ably performed.

The implication of these findings for PTSD becomes clear 
when the absence of behavioral differences (as indexed by rever-
sal learning) is considered: as is well known from the behavioral 
(and, to a lesser extent, from the fMRI) literature, no consistent 
and clinically relevant differences have emerged in threat condi-
tioning paradigms10, which is surprising given the proposed cen-
tral role of threat conditioning in the pathophysiology of PTSD4. 
A possible explanation is that behavioral measures, for example, 
SCR, are noisy and can indeed be interpreted as noisy realizations 
of deterministic learning models33. This suggests that the differ-
ences that are relevant for the disease may in fact be reflected by 
the latent parameters of the generative model rather than the noisy 
behavioral data.

Although all veterans were combat-exposed, only some of them 
developed symptoms strong enough to warrant a classical (DSM 
based) PTSD diagnosis. While our results do not allow us to draw 
causal inferences, our data do support the notion that veterans may 
develop more severe PTSD symptoms in response to altered neu-
ral computation of value and associability in several brain regions. 
Interestingly, the enhanced sensitivity to prediction errors was 
partially mediated by the striatal associability computations, sug-
gesting that both increased prediction-error weight and decreased 
striatal tracking of associability independently contribute to PTSD 
symptoms. It is possible that the enhanced sensitivity to prediction 
errors might be the by product of the decreased neural associabil-
ity tracking.

All in all, these results suggest that exploiting the combined 
power of computational, morphological, and functional analyses 
enable us to relate latent markers of learning and morphologi-
cal indices to overt symptoms, as specific targets for investigating 
trauma-related psychopathology and its potential treatment.

Neural
activity

a b

PE weight CAPS
c,c’

βc = 0.53***

βa = –0.29* βb = –0.42**

βc’ = 0.45***

Fig. 5 | Associability-related neural activity in the right striatum partially 
mediates the relationship between prediction-error weights and CAPS. 
Standardized regression coefficients are shown (N =​ 54 participants) and 
their statistical significance tested with one-sample t tests, two-tailed. 
Both prediction-error weights and striatal neural tracking of associability 
independently predicted PTSD symptoms as measured with CAPS when 
included as predictors in the same model. PE, prediction error; ***P <​ 0.001; 
**P <​ 0.01; *P <​ 0.05.
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Methods
Sample characteristics. General description and excluded participants. A total 
of 77 participants took part in the experiment. Due to problems with the SCR 
equipment or measurement problems during the functional scan, we did 
not obtain complete skin conductance and/or functional imaging data of 23 
participants. These participants were similar compared to the included participants 
(see Supplementary Table 1). This was confirmed by comparing age, CAPS, BDI, 
STAIS, ASI, CES and education between excluded and included participants in a 
linear mixed model with the within subject factor metric (with the aforementioned 
variables as levels) and the between subject factor sample (levels: included, 
excluded) as well as a random intercept. Importantly, the effects of sample  
(F(1, 75.05) =​ 0.05, P =​ 0.832) and the metric by sample interaction  
(F(6, 434.7) =​ 0.13, P =​ 0.993) were both not significant.

Thus, the full analysis was conducted on 54 combat veterans (see Table 1 for 
complete demographic and psychopathology details). The sample partially overlaps 
(N =​ 30) with the sample in a previous report13. The main reason to consider the 
partially overlapping structural data in the current study is that it increased the 
predictive validity of the right amygdala neural computations effect. In addition, 
since volume had already been shown to be predictive of CAPS symptoms13, the 
current study aimed to explicitly test whether the effect of neural computation goes 
beyond this effect of volume.

The study was approved by the Yale University Human Investigating 
Committee and the Human Subjects Subcommittee of the VA Connecticut 
Healthcare System and compliance with all relevant ethical regulations was ensured 
throughout the study. All participants gave informed consent and were paid for 
their participation. Sample size was determined based on the assumption of a 
medium to large (r =​ 0.4) brain-behavior relationship between PTSD symptoms 
and blood-oxygenation-level-dependent (BOLD) activation. The necessary sample 
size was thus calculated as N =​ 46 with 80% power and N =​ 61 with 90% power.

Addressing the gender imbalance in the study sample. Since there was a considerable 
gender imbalance in our study sample (49 of the 54 participants were male), 
we verified that all of the main results of the current study hold up when 
restricting the study sample to only male participants. Specifically, the effect 
of higher prediction-error weight predicting more CAPS symptoms remained 
significant (β =​ 0.51, t(46) =​ 4.03, two-tailed, P <​ 0.001). In addition, the effect of 
value computation for the right amygdala changed only minimally (β =​ −​0.27, 
t(43) =​ −​1.78, two-tailed, P =​ 0.083) and remained significant for the left amygdala 
(β =​ −​0.36, t(43) =​ −​2.38, two-tailed, P =​ 0.022); and the volume effect for the right 
amygdala remained significant (β =​ −​0.5, t(43) =​ −​2.54, two-tailed, P =​ 0.015).

In addition, the interaction of region and CAPS remained significant for value 
computation (F(2, 94) =​ 3.12, P =​ 0.049), and the interaction of learning component 
by CAPS remained significant for associability and prediction-error computation 
(F(1, 188) =​ 21.94, P <​ 0.001).

Thus, the heterogeneity introduced by gender seems to be negligible in this 
study, which is why we decided to keep the female participants in the sample to 
maximize statistical power of the otherwise relatively small study and precision of 
the estimated effects.

Addressing the clinical heterogeneity of the study sample. We recruited veterans with 
a wide range of psychopathology, from completely healthy to pronounced PTSD, 
which can be seen from the distributions of PTSD (CAPS), depression (BDI), and 
anxiety symptoms (STAIS, ASI; Supplementary Fig. 1). Nevertheless, the reversal 
learning index did not differ significantly between combat veterans with and 
without PTSD (t (48.46) =​ 0.17, two-tailed, P =​ 0.868), between combats with high 
versus low PTSD (median split; t (36.13) =​ −​0.51, two-tailed, P =​ 0.611), or between 
combat veterans with CAPS values on the extreme lower (CAPS ≤​ 20; N =​ 19) or 
extreme higher end (CAPS ≥​ 65; N =​ 10; t (10.73) =​ 0.48, two-tailed, P =​ 0.638).

To confirm that our main results were not significantly influenced by the 
clinical heterogeneity in our sample, we adjusted our models testing for neural 
computations of value, associability and prediction error for comorbidities 
and medication status. For value computation, the region by CAPS interaction 
remained significant when the model was adjusted for the number of comorbidities 
and medication status (F(3, 153) =​ 3.51, P =​ 0.017). In addition, the effect was 
also robust to the adjustment for depression (BDI; F(3, 153) =​ 3.73, P =​ 0.013, 
state anxiety (STAIS; F(3, 141) =​ 3.57, P =​ 0.016) and anxiety sensitivity (ASI; F(3, 
150) =​ 3, P =​ 0.032).

Similarly, for associability and prediction-error computation, the learning 
component by CAPS interaction remained significant when the model was 
adjusted for the number of comorbidities and medication status (F(1, 306) =​ 10.41, 
P =​ 0.001). In addition, the effect was also robust to the adjustment for depression 
(BDI; F(1, 306) =​ 10.96, P =​ 0.001), state anxiety (STAIS; F(1, 282) =​ 10.9, 
P =​ 0.001), and anxiety sensitivity (ASI; F(1, 300) =​ 11.06, P <​ 0.001).

Finally, we also verified that the correlations we report in the main manuscript 
held up when using non-parametric rank correlation tests. Specifically, we 
confirmed this for the correlation between prediction-error weight and CAPS 
(ρ =​ 0.52, two-tailed, P <​ 0.001), for the correlation between left amygdala neural 
value tracking and CAPS (ρ =​ −​0.3, two-tailed, P =​ 0.03), the correlation between 
right amygdala volume and CAPS (ρ =​ −​0.37, two-tailed, P =​ 0.005), the correlation 

between right amygdala neural value tracking and CAPS (ρ =​ −​0.27, two-tailed, 
P =​ 0.046), the correlation between striatum neural value tracking and CAPS (ρ =​ −​
0.35, two-tailed, P =​ 0.009), the correlation between striatum neural associability 
tracking and CAPS (ρ =​ −​0.37, two-tailed, P =​ 0.006), the correlation between 
dACC neural associability tracking and CAPS (ρ =​ −​0.29, two-tailed, P =​ 0.031), 
and the correlation between hippocampus neural associability tracking and CAPS 
(ρ =​ −​0.29, two-tailed, P =​ 0.033).

Together, these results suggest that the findings of this study were robust to the 
clinical heterogeneity of the study sample, and that the correlations we report were 
robust to outliers.

Study design. The study consisted of a threat reversal learning experiment during 
fMRI on a single day. Threat learning was measured with SCR; structural magnetic 
resonance images were acquired in the same MRI session, immediately before the 
task. Participants were randomly assigned to one of two trial orders (see below). 
Due to the study design, data collection and analysis were not performed blind to 
the conditions of the experiments.

Screening procedures. Psychopathology was assessed using the Structural Clinical 
Interview for DSM-IV, the gold-standard CAPS for PTSD diagnosis. Exclusion 
criteria were mental retardation, psychosis, bipolar disorder, substance dependency 
(life time), drug abuse in the past year, alcohol abuse in the past 60 days, 
neurological disorders, learning disabilities, attention deficit hyperactivity disorder, 
use of antipsychotic, hypnotic or sedative medications and less than 30 days’ stable 
dose of antidepressants. Participants currently below PTSD clinical cutoff (that is, 
presence of at least one criterion B symptom, at least three criterion C symptoms, 
at least two criterion D symptoms, as well as criteria A, E and F met) with a history 
of PTSD diagnosis were also excluded (remitted PTSD). We additionally measured 
the combat exposure score (CES), depression with the BDI, anxiety sensitivity with 
the ASI and state anxiety with the STAIS. Participants underwent breathalyzer 
and urine tests before the experiment to further validate substance use beyond the 
Structural Clinical Interview for DSM-IV.

Experimental task. We used the same task as in a previous study on threat reversal 
in healthy participants7; that is, a threat discrimination and reversal task, with delay 
conditioning and partial reinforcement of about 33% (Fig. 1a). Participants were 
told that they would see visual images on a screen while receiving shocks. The level 
of the shocks was determined by participants before the experiment. Participants 
inside the MRI were instructed to pay attention to the screen and try to figure 
out the relationship between the stimuli and the shocks. Importantly, we did not 
mention the two stages or the reversal of contingencies. The conditioned stimuli 
were two mildly angry male faces from the Ekman series.

Stimuli and apparatus. The unconditioned stimulus was a mild electric shock to 
the foot (200 ms duration, 50 pulses s–1). The stimuli were presented for 4 s, with 
a 12 s intertrial interval in which a fixation point was presented (Fig. 1a). During 
acquisition, one face (face A) was paired with the unconditioned stimulus on one-
third of the trials, while the other (face B) was never paired with the unconditioned 
stimulus. During reversal, these contingencies switched, and face B was now 
paired with the unconditioned stimulus on approximately one-third of the trials 
and face A was not paired with the unconditioned stimulus. The order of the 
different trial types was pseudorandomized (no consecutive reinforced trials and 
no more than two consecutive trials of each kind), and the designation of faces into 
’face A’ and ’face B’ was counterbalanced across participants. During acquisition, 
there were 12 presentations of each of the faces, intermixed with an additional 
six presentations of face A that co-terminated with the unconditioned stimulus. 
Reversal immediately followed acquisition, and the transition between the stages 
was unsignaled. This stage consisted of 16 presentations of each of the faces, 
intermixed with seven additional presentations of face B that co-terminated with 
the unconditioned stimulus. We considered the first trial in which face  
B co-terminated with the unconditioned stimulus as the beginning of the reversal 
stage (Fig. 1a).

Physiological data acquisition and analysis. Mild shocks were delivered through 
a stimulating bar electrode attached to the participant’s right ankle. A BIOPAC 
stimulator charged by a stabilized current was used, with cable leads that were 
magnetically shielded and grounded through a radio frequency filter. The 
participants were asked to set the level of the shock themselves using a work-up 
procedure before scanning. In this procedure, a participant was first given a very 
mild shock (20 V, 200 ms, 50 pulses/s), which was gradually increased to a level the 
participant indicated as uncomfortable, but not painful (with a maximum level of 
70 V). Skin conductance was assessed with shielded Ag–AgCl electrodes, filled with 
standard NaCl electrolyte gel and attached to the middle phalanges of the second 
and third fingers of the left hand. The electrode cables were grounded through 
an radio frequency filter panel. The skin conductance signal was amplified and 
recorded with a BIOPAC Systems skin conductance module connected  
to a computer.

Data were continuously recorded at a rate of 200 samples per second. An 
off-line analysis of the analog skin conductance waveforms was conducted with 
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AcqKnowledge software (BIOPAC Systems). The level of SCR was assessed for 
each trial as the base-to-peak amplitude difference in skin conductance of the 
largest deflection (in microsiemens; μ​S) in the 0.5–4.5-s latency window after 
stimulus onset. The minimal response criterion was 0.02 μ​S. Responses below this 
criterion were encoded as zero. The raw skin conductance scores were square-
root transformed to normalize the distributions, and scaled according to each 
participant’s average response to the unconditioned stimulus.

Statistical analysis. We averaged the learning effects (face A minus face B) across 
trials by stage (acquisition, reversal) for each participant and calculated a threat 
reversal index by subtracting the learning effect of reversal from the learning effect 
of acquisition. To assess whether participants showed successful threat reversal, 
we tested whether the reversal index was significantly different from zero with a 
one-sample t-test. The threshold for this analysis was set at P <​ 0.05, two-tailed. 
The relationship between latent learning parameters (see below) and PTSD 
symptomatology was estimated with a linear regression model. Data distribution 
was assumed to be normal but this was not formally tested. However, individual 
data points are shown in scatter plots throughout the manuscript.

Computational modeling. Following classic computational learning theory31, we 
assumed a deterministic learning model and a probabilistic observation model to 
describe the generation of our data. The deterministic learning model describes 
the dynamics of how internal variables gate learning, while the observation model 
describes how the internal variables are realized in observed data.

Pearce–Hall learning model. Unlike the Rescorla–Wagner model (see below) that 
treats the learning rate as constant, the Pearce–Hall model for associability-gated 
learning substitutes associability for the constant learning rate. Thus, such a model 
incorporates prediction-error-driven value updating into an associability model, 
resulting in the hybrid model:
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Here, xn is the conditioned stimulus on trial n (conditioned stimulus: CS+​ or CS−​) 
and rn as the unconditioned stimulus delivered (1 for unconditioned stimulus, 0 
for no unconditioned stimulus). The punishment prediction error δn measures the 
difference between the expected and predicted shock on trial n. The associability 
α for the value update is a variable. The value for the conditioned stimulus not 
observed on trial n remains unchanged. Since associability of trial n depends on 
absolute prediction errors from past but not current trials, associability αn(xn) and 
prediction error δn are relatively uncorrelated.

To derive the best fits for this model, we assumed that V0 =​ 0.5, reflecting 
the assumption that getting a shock or not was equally likely for the first trial. 
We compared the fit of different versions of the hybrid model to the SCR data 
by optimizing the free parameters of each model. We assumed the likelihood 
of each trial’s SCR Sn to be an independent and identically distributed Gaussian 
distribution around a mean determined by value, associability or the combination 
of both value and associability as predicted by the model on that trial (plus a 
constant term):
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As can be seen, these correspond to linear regressions of value or associability, or 
the combination of both, to the SCR. We tested all three possible combinations 
(equations 1–3; Hybrid (V); Hybrid (α); Hybrid (α +​ V)), all in separate fits of all 
free parameters.

Using Hierarchical Bayesian modeling, we first verified that we could recover 
simulated parameters of initial associability (α0), κ and the associability learning 
rate, η (Supplementary Fig. 2). We also ruled out that an extended model with an 
additional scaling parameter that captured a change of the prediction-error weight 
for the reversal stage would fit the data better (Fig. 2a)

Rescorla–Wagner learning model. Although we found that a hybrid model of 
associability and value computation outperformed a simpler Rescorla–Wagner 
model, we were also interested in how a basic Rescorla–Wagner model could explain 
value computation in the amygdala. The Rescorla–Wagner model is the standard 
model of error-driven predictive learning. It assumes that the expected value (V) for 
each trial is updated according to the learning rate and the prediction error:
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Here, xn is the conditioned stimulus on trial n (face A or face B) and rn as the 
unconditioned stimulus delivered (1 for unconditioned stimulus, 0 for no 

unconditioned stimulus). The punishment prediction error δn measures the 
difference between the expected and predicted shock on trial n. The learning 
rate α for the value update is a constant free parameter. The expected value for 
the conditioned stimulus absent on trial n remains unchanged. To derive the 
best fits from the Rescorla–Wagner model, we assumed that V0 =​ 0.5, reflecting 
the assumption that getting a shock or not was equally likely for the first trial. 
We considered that model-based value computation would be correlated 
with amygdala activity, and that this correlation would be more negative for 
individuals with higher levels of PTSD symptoms. After verifying that simulated 
parameters could be recovered with the hierarchical Bayesian approach used in 
this study (Supplementary Fig. 5) and that the model indeed fitted the recorded 
SCRs (Supplementary Fig. 6), we calculated linear regression models including 
functional (value encoding) and structural indices for amygdala as predictors of the 
PTSD symptoms. To account for unspecific intersubject variability, these models 
were adjusted for learning rate, age, gender, head movement and total intracranial 
volume. For the right amygdala (Supplementary Fig. 7a), we found that volume 
predicted CAPS symptoms (β =​ −​0.49, t(46) =​ −​2.59, two-tailed, P =​ 0.013 and 
Supplementary Fig. 7b) while neural activity as a predictor did not reach statistical 
significance (β =​ −​0.28, t(46) =​ −​2, two-tailed, P =​ 0.052 and Supplementary Fig. 
7c). In the left amygdala, the effect of value-dependent activity remained significant 
when including amygdala volume in the same model (β =​ −​0.35, t(46) =​ −​2.42, 
two-tailed, P =​ 0.02 and Supplementary Fig. 7d), but no independent effect for 
volume emerged (β =​ −​0.2, t(46) =​ −​1.04, two-tailed, P =​ 0.303).

We also confirmed that the results were robust to the specific ROI definition 
of the amygdala and that individual differences in right amygdala volumes did not 
affect the effect of neural activity on CAPS symptoms: We repeated our analysis 
of right amygdala value computation using the winning hybrid (α +​ V) model. We 
used the individual amygdala segmentations as computed by Freesurfer as masks 
for the ROI analysis of the right amygdala in SPM. After running the recon-all 
pipeline in Freesurfer, we converted and binarized the subcortical segmentation 
of each individual to NIfTI format. We then applied the individual normalization 
parameters calculated by SPM during the SPM preprocessing pipeline to warp 
the Freesurfer segmentation to the Montreal Neurological Institute space. A 
figure (Supplementary Fig. 8) shows two illustrative participants with individual 
amygdala masks (estimated in Freesurfer and indicated in red) projected on to 
their T1-weighted brain anatomy in SPM.

Given that we found an effect of volume for the right amygdala, we thus 
extracted the mean beta estimates of these individual right amygdala masks 
and entered the estimates in a multivariable regression model, using CAPS as 
the dependent measure and the beta estimates together with amygdala volume 
as predictors, adjusting for age, gender and intracranial volume. We found a 
similar effect for the neural activity compared to the original findings in the right 
amygdala (β =​ −​0.3, t(48) =​ −​2.07, two-tailed, P =​ 0.044), suggesting that the BOLD 
effects were correctly estimated.

To further characterize the relationship between structure and function we 
added the interaction term to the model and found that there was no evidence for 
a synergistic effect between these independent variables (right amygdala: β =​ −​0.7, 
t(45) =​ −​0.71, two-tailed, P =​ 0.482; left amygdala: β =​ −​0.02, t(45) =​ −​0.02, two-
tailed, P =​ 0.988). Moreover, the correlation between structure and function was 
not significant (right amygdala: r(52) =​ 0.05, two-tailed, P =​ 0.742; left amygdala: 
r(52) =​ 0.04, two-tailed, P =​ 0.797). Further, a mediation analysis with amygdala 
volume as a mediator of the association between value activity and CAPS symptoms 
did not show evidence for full or partial mediation; instead, inclusion of amygdala 
volume did in fact improve the predictive validity of neural activity. A possible 
explanation is a compensatory recruitment of amygdala neurons in veterans with 
smaller amygdala volumes, probably due to a stress-related gray matter reduction23.

We also tested a potential difference in learning rates between acquisition 
and reversal and additionally tested an extended version of the Rescorla–Wagner 
model. We added an additional scaling parameter ρ, which captures the change 
in the learning rate during the reversal stage. For acquisition, we thus used the 
classical Rescorla–Wagner model:
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and the extended model for reversal:
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where ρ is the scaling parameter. We performed a model comparison between the 
two models, computing the DIC that captures the goodness of fit of a Bayesian 
hierarchical model with lower values meaning better fits34. Notably, we found that 
the simpler model provides a better fit to the data (extended model: DIC =​ 6223.11; 
simpler model: DIC =​ 6003.91).

Finally, we investigated whether fitting V0, the initial value, as an additional 
free parameter would improve the model fit and found that the resulting DIC was 
higher than the one from the original simpler model; we thus kept the simpler 
model with V0 fixed at 0.5.
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Hierarchical Bayesian model fitting. Bayesian modeling versus MLE. We used 
Hierarchical Bayesian analysis (HBA) to obtain estimates of the free parameters 
in our computational models. The advantage of HBA compared to MLE is that 
individual differences are accounted for but information across individuals is 
pooled so that individual estimates are pulled toward the population mean (an 
effect sometimes referred to as shrinkage35).

In MLE, on the other hand, point estimates are obtained that maximize the 
likelihood of the data for each individual separately36. Individual ML estimates, 
however, may suffer from noise and may be unreliable when faced with an 
insufficient amount of data37. In addition, there is no guarantee that non-linear 
optimization algorithms commonly used (such as fmincon in MATLAB) will 
provide a set of parameter values that uniquely maximize the log-likelihood; 
indeed, premature stops of the algorithm are common, which provide a local 
(and thus sub-optimal) instead of a global maximum of the likelihood function36. 
Group-level analysis of MLE, which treats a group as a single subject and estimates 
a single set of parameters for a whole group of individuals, is commonly used to 
generate fMRI regressors for model-based analyses as it is supposed to generate 
more reliable estimates needed for fMRI33, but it inevitably ignores individual 
differences and does not allow for group comparisons.

Hybrid model comparison using MLE. Nevertheless, to replicate the model 
comparison reported in Li and colleagues more directly8, we also performed a 
model comparison of the hybrid models using MLE as in the aforementioned 
study, and ranked all three hybrid models as well as the Rescorla–Wagner model 
according to their Bayesian Information Criterion (BIC). Consistent with the 
results in Li and colleagues8, the model with the lowest BIC was the hybrid 
(α +​ V) model, outperforming the other hybrid models as well as the Rescorla–
Wagner model (Supplementary Fig. 4a). More specifically, direct comparisons 
using likelihood ratio tests revealed that the Hybrid (V) model outperformed 
the Rescorla–Wagner analysis model (χ2 =​ 408.11, d.f. =​ 108, P <​ 0.001), and the 
Hybrid (α +​ V) outperformed the Rescorla–Wagner model (χ2 =​ 877.61, d.f. =​ 162, 
P <​ 0.001), the Hybrid (V) model (χ2 =​ 469.5, d.f. =​ 54, P <​ 0.001) and the Hybrid 
(α) model (χ2 =​ 348.54, d.f. =​ 54, P <​ 0.001).

We did not find evidence that the individual MLE model fits interacted with 
the PTSD symptomatology; the correlation between model parameters and 
symptoms was essentially flat for each of the four models (Supplementary Fig. 4b).

Details on the Bayesian modeling procedure. To perform HBA, we used the 
probabilistic programming language Stan v.2.15.1 (Stan Development Team, 2014), 
which makes use of Markov chain Monte Carlo (MCMC) sampling algorithms 
termed Hamiltonian Monte Carlo. Hamiltonian Monte Carlo provides an efficient 
sampling algorithm even for multilevel models and highly correlated parameters38.

For the Rescorla–Wagner model, individual parameters were assumed to 
be drawn from group-level normal distributions. Normal and half-Cauchy 
distributions were used for the priors of the group-level means and standard 
deviations, respectively39,40. We used weakly informative priors35 to minimize the 
influence of those priors on the posterior distributions with our relatively small 
sample size. As the learning rate α​ is bounded between 0 and 1, we used the inverse 
probit transformation (the cumulative distribution function of a unit normal 
distribution) to convert unconstrained values into this range. The mathematical 
relationship between the probability density function and the cumulative density 
function of the unit normal distribution guarantees for this transformation that the 
converted prior will be uniformly distributed between 0 and 1. Stan provides a fast 
approximation of the inverse probit transformation (the Phi_approx function) to 
achieve this. The learning rate was thus declared as follows:
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where μα′​ and σα′​ are hyper-parameters that dictate the distribution of α‘ and 
sequentially α.

A total of 2,000 samples were drawn after 1,000 burn-in samples for each of 
four chains (resulting in a total of 8,000 samples). To assess the convergence of 
the chains for each parameter, we used the Gelman–Rubin test41 that calculates 
an ̂R statistic, with ̂R values close to 1.00 indicating that the MCMC chains have 
converged to the target distributions.

Notably, the ̂R values obtained for all model parameters were 1.00, and 
visual inspection of MCMC chains confirmed the mixing of MCMC samples. 
In addition, effective sample sizes (ESS) of model parameters, which are 
associated with autocorrelation and mixing of MCMC chains (with a smaller 
ESS indicating higher autocorrelation), were typically greater than 1,000 (out 
of 8,000 total samples). The minimum ESS of hyper-parameters was 592. Visual 
inspection of the parameters with smaller ESS confirmed their convergence to 
the target distributions.

For the hybrid models, priors of individual parameters were again assumed 
to be drawn from group-level normal distributions, but normal and half-normal 

distributions were used for the priors of the group-level means and standard 
deviations, respectively.

Parameter recovery tests. To further verify the plausibility of our model, we used 
simulated data to test whether simulated parameters could be recovered (recovery 
tests). We generated true parameter values, simulated synthetic behavioral data 
based on the parameters and recovered their parameter values using the HBA 
described in the previous section. Results confirmed that the model was successful 
at recovering the simulated parameters (Supplementary Figs. 2 and 5).

Statistical analysis. For the Rescorla–Wagner model, we used the individual 
posterior means of the learning rate to calculate the trial-wise expected value for 
each participant. These values were used as parametric modulators in the model-
based fMRI analysis. For the hybrid model, trial-wise expected value, associability 
and prediction error were used as parametric modulators in the model-based fMRI 
analysis (see below).

Structural magnetic resonance imaging and analysis. A Siemens Trio TIM 3T 
and 12-channel receiver array head coil were used for data acquisition. High-
resolution T1-weighted anatomical images (1 ×​ 1 ×​ 1 mm3) were acquired with an 
MPRAGE pulse sequence (voxel size 1 ×​ 1 ×​ 1 mm3; repetition time =​ 2.5 s; echo 
time =​ 2.77 ms; flip angle =​ 7°; 256 ×​ 256 matrix, 176 sagittal slices of 1 mm).

Blinded to the clinical status, image processing and segmentation were 
conducted using the automated Freesurfer recon-all pipeline (http://surfer.nmr.
mgh.harvard.edu). Freesurfer transforms brains from native space to standard 
space to perform subcortical segmentation, and then transforms them back to 
native space to extract individual amygdala volumes. We thus used those extracted 
measures of amygdala volume for each participant and restricted the analysis to 
this a priori defined ROI. Amygdala volume measures were then used as predictors 
in multivariable linear regressions (see below).

Notably, excessive head motion was found to be associated with reduced 
estimates of gray matter thickness and volume compared to age- and gender-
matched samples and consequently with inflated effect sizes42. Following a recent 
suggestion that participants’ head movement during functional imaging sequence 
may provide a proxy for head movement during the structural sequence (where 
no head movement is recorded), we calculated the total head movement in mm 
during fMRI for each participant and included this scalar as a covariate in the 
statistical analysis42. Importantly, this covariate was used as a proxy measure for 
head movement during the anatomical session. The movement during the fMRI 
session was regressed out in the fMRI design matrix. Note that the exclusion of this 
additional regressor in the multivariable regression did not alter the main results of 
our analysis.

fMRI and analysis. Functional images were acquired using a single-shot gradient 
echo planar imaging sequence (repetition time =​ 2,000 ms; echo time =​ 25 ms; 
field of view =​ 192 cm; flip angle =​ 75°; bandwidth =​ 4,340 Hz per pixel; echo 
spacing =​ 0.29 ms). Forty contiguous oblique-axial slices (3 ×​ 3 ×​ 3 mm3 voxels) 
parallel to the anterior-commissure-posterior-commisure line were obtained.

Analysis of the imaging data were conducted using SPM 12 (http://fil.ion.
ac.ak/spm12). After discarding the first eight volumes, native-space images were 
realigned, slice-time corrected and co-registered to each subject’s structural scan. 
Structural image preprocessing included segmentation, bias correction and spatial 
normalization; these normalization parameters were also used to normalize the 
functional images. Finally, functional images were smoothed with a Gaussian 
kernel (4 mm full-width at half-maximum).

Model-based fMRI analysis. We conducted a computational analysis using the 
hybrid Pearce–Hall learning model, with the fMRI regressors derived from the fits 
to the SCR data. Cue onset and offset were modeled as two discrete events, and 
each expected value (V) regressor was included as a parametric modulator of the 
stimulus onset event. In addition, the occurrence of a shock (0 for trials with no 
shock, 1 for trials with a shock) and prediction error were modeled as parametric 
modulators of cue offset.

Six regressors modeling affine head-motion parameters were also included 
in the GLM. All events were convolved with a canonical gamma-variate 
hemodynamic response function. The contrast of interest was the correlation of 
expected value V, corresponding to the expectation of a shock on each trial, with 
the BOLD response in the brain. We thus computed images of this contrast for 
each participant and used the contrast images as input for the ROI-based analyses. 
Our ROI-based analysis focused on the amygdala. We defined the amygdala 
ROIs functionally, using an independent contrast of conditioned stimuli (both 
face A and face B) versus baseline and a relatively loose contrast of P <​ 0.001. For 
each ROI, we extracted the mean beta estimates obtained from the GLM for the 
correlation of expected value V with the BOLD response. The beta estimates were 
then entered as predictors in multivariable linear regressions.

To assess the independent contributions of structural and functional indices 
on PTSD symptoms, we then calculated multivariable linear regressions including 
both the structural and functional indices as predictors, and the symptoms as 
measured with the CAPS as outcome measures. For each ROI, the structural index 
was the volume, the functional indices were the extracted mean beta estimates 
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obtained from the computational GLM for the correlation of expected value V with 
the BOLD response. These models were adjusted for learning rate, age, gender, 
head movement and total intracranial volume to adjust for unspecific  
intersubject variability.

In addition to the amygdala, we extended our analysis to the dACC, the 
striatum and hippocampus. The dACC was defined with an independent 
functional contrast (face A versus face B in acquisition, corresponding to 
conditioned stimulus: CS+​ versus CS−​); since Li and colleagues8 found the 
strongest activation in the caudate nucleus, we used a contrast of shock occurrence 
versus baseline in a sample of healthy control participants who underwent the 
same task to ensure reliable activation43,44. Like the functional contrast for the 
dACC, this contrast for the striatum was also independent of the computational 
contrasts. The hippocampal ROI was defined anatomically using the WFU 
Pickatlas45. We then used two separate GLMs to examine neural activity related 
to value encoding (GLM 1) as well as associability and prediction error (GLM 2). 
Replicating the design of a previous study in reversal learning and value encoding 
for GLM 19, we included value encoding as parametric modulator of stimulus onset 
and included shock occurrence and prediction error as additional regressors of 
stimulus offset. For GLM 2, we followed the design of the previous study by Li and 
colleagues8 and included associability, shock occurrence and prediction error as 
parametric modulators of stimulus offset.

We then extracted the beta estimates of the ROIs and computed separate linear 
mixed models for value computation as well as associability and prediction error, 
respectively. Neural activity was used as the dependent variable in these models, 
and predictors for region and CAPS (model 1, predicting value computation) as 
well as learning component (model 2; predicting associability and prediction error) 
were entered as predictors. In addition, we included a random intercept and a 
random slope for region to account for the within-subject correlations.

We also performed a computational analysis using the simpler Rescorla–
Wagner learning model, with the fMRI regressors derived from the fits to the SCR 
data. Cue onset and offset were modeled as two discrete events, and each expected 
value (V) regressor was included as a parametric modulator of the stimulus onset 
event. In addition, the occurrence of a shock (0 for trials with no shock, 1 for trials 
with a shock) and prediction error were modeled as parametric modulators of cue 
offset, but are not considered in this study due to algebraic collinearity with the V 
regressor. This means that the parametric regressor of interest was expected value, 
which modulated cue onset, while the regressors for shock outcome and prediction 
error were included in the design matrix (modulating cue offset) but are not 
considered in this study.

While this setup is in line with previous studies using the same reversal 
paradigm together with computational modeling8,9, we manually confirmed that 
that the amount of collinearity in the fMRI design matrix was acceptable. We 
calculated the variance inflation factor (VIF) for the value regressor. The VIF 
reflects how much the variance of the estimated regression coefficient is increased 
by the correlation among the model regressors. Its square root quantifies how 
larger the standard error is compared with what it would be if the regressor were 
uncorrelated with the model regressors. While it is common practice to consider 
a VIF >​ 10 as problematic, it is important to note that even in the presence of 
collinearity the regression coefficients will be unbiased. As the term VIF suggests, 
what is affected is the variance of the estimates, resulting in increased noise and 
reduced statistical power. However, we verified that the VIF of the value regressor 
was below five for each participant, with a mean VIF across participants of 1.5 

(s.d. 0.13) suggesting that collinearity was not an issue for this design. Supporting 
this conclusion, the effects for amygdala value computation on CAPS symptoms 
remained significant when including the amygdala activation during shocks in the 
same model (left: β =​ −​0.34, t(46) =​ −​2.32, two-tailed, P =​ 0.025; right: β =​ −​0.31, 
t(46) =​ −​2.14, two-tailed, P =​ 0.038).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability
The code used for the analyses is available online at: http://osf.io/rxsw2/.

Data availability
Data used to support the conclusions of this study is available online at: http://osf.
io/rxsw2/.
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The data that support the findings of this study as well as the code used for the analyses are available from the corresponding authors upon reasonable request.
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Sample size Sample size was determined based on the assumption of a medium to large (r = 0.4) brain-behavior relationship between PTSD symptoms and 
BOLD activation. The necessary sample size was thus calculated as N=46 with 80% power and N=61 with 90% power.

Data exclusions A total of 77 participants took part in the experiment. Due to problems with the SCR equipment or measurement problems during the 
functional scan, we did not obtain complete skin conductance and/or functional imaging data of 23 participants.

Replication We did not replicate our findings in an independent sample. To ensure reproducibility of our findings we structured the analyses with a 
'Makefile' which documents the dependencies between different analysis modules and allows to run the analyses using the 'make' command 
at the Unix command line. All the code used is organized in a git repository and is available from the authors upon request.

Randomization In this study, combat veterans with varying degrees of psychopathology were recruited. Thus, due to the study design, group-membership 
(combats with PTSD versus combats without PTSD) was not randomized but predetermined. We did, however, randomize participants to two 
experimental orders in the reversal learning experiment.

Blinding Since participants did not receive a treatment but were tested in an experiment, blinding was not applicable in this study.

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics 54 participants, mean age: 32.81 (7.97), 49 males, 5 females; mean CAPS score 39.22 (32.01).

Recruitment Participants were recruited from the community by posting research flyers at several VA hospital in the region, VA community-
based clinics, Veterans Centers, universities bulletin boards, and at universities veterans' organization offices.

Magnetic resonance imaging
Experimental design

Design type Task; event-related

Design specifications 69 trials, 4 s each, intertrial interval 12s.

Behavioral performance measures The behavorial performance was measured with skin conductance response. Skin conductance was assessed with 
shielded Ag-AgCl electrodes, filled with standard NaCl electrolyte gel, and attached to the middle phalanges of the 
second and third fingers of the left hand. The electrode cables were grounded through an RF filter panel. The skin 
conductance signal was amplified and recorded with a BIOPAC Systems skin conductance module connected to a 
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computer. Data were continuously recorded at a rate of 200 samples per second. An off-line analysis of the analog skin 
conductance waveforms was conducted with AcqKnowledge software (BIOPAC Systems). The level of skin conductance 
response was assessed for each trial as the base-to-peak amplitude difference in skin conductance of the largest 
deflection (in microsiemens) in the 0.5-4.5 s latency window after stimulus onset. The minimal response criterion was 
0.02 microsiemens. Responses below this criterion were encoded as zero. The raw skin conductance scores were square 
root transformed to normalize the distributions, and scaled according to each participant’s average response to the US. 
We averaged the learning effects (face A minus face B) across trials by stage (acquisition, reversal) for each participant 
and calculated a threat reversal index by subtracting the learning effect of reversal from the learning effect of 
acquisition. To assess whether participants showed successful threat reversal, we tested whether the reversal index was 
significantly different from zero with a one sample t-test.

Acquisition

Imaging type(s) Structural and functional.

Field strength 3 Tesla.

Sequence & imaging parameters Structural: MPRAGE pulse sequence (voxel size 1×1×1 mm; repetition time =2.5 s; echo time =2.77 ms; flip 363 angle 
=7°; 256×256 matrix, 176 sagittal slices of 1 mm). 
Functional: single-shot gradient echo EPI sequence (TR =2000 ms; 380 TE =25 ms; FOV =192 cm; flip angle =75°; 
bandwidth =4340 Hz/px; echo spacing =0.29 ms). Forty contiguous oblique-axial slices (3×3×3 mm voxels) parallel to the 
AC-PC line.

Area of acquisition Whole brain scan.

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Analysis of the imaging data were conducted using SPM 12 (http://fil.ion.ac.ak/spm12). After discarding the first eight 
volumes, native-space images were realigned, slice-time corrected, and coregistered to each subject’s structural scan. 
Structural image preprocessing included segmentation, bias correction, and spatial normalization; these normalization 
parameters were also used to normalize the functional images. Finally, functional images were smoothed with a 
Gaussian kernel (4 mm FWHM).

Normalization Structural image preprocessing included spatial normalization, these normalization parameters were also used to 
normalize the functional images.

Normalization template MNI.

Noise and artifact removal Motion parameters.

Volume censoring No volumes were censored.

Statistical modeling & inference

Model type and settings We performed a computational analysis using the Rescorla-Wagner learning model, with the fMRI regressors derived 
from the fits to the skin conductance data. Cue onset and offset were modeled as two discrete events, and each 
computational regressor was included as a parametric modulator of the stimulus onset or offset event. In addition, the 
occurrence of a shock (0 for trials with no shock, 1 for trials with a shock) was modeled as parametric modulators of cue 
offset. Six regressors modeling affine head-motion parameters were also included in the GLM. All events were 
convolved with a canonical gamma-variate hemodynamic response function (HRF). The contrast of interest was the 
correlation of expected value V, corresponding to the expectation of a shock on each trial, with the BOLD response in 
the brain. We thus computed images of this contrast for each participant and used the contrast images as input for a 
ROI-based analysis.

Effect(s) tested For each ROI, we extracted the mean beta estimates obtained from the GLM for the correlation of expected value V 
with the BOLD response for each participant. These beta estimates were then entered as predictors in multivariable 
linear regressions, with the psychopathology symptoms as outcome measure.

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s) Amygdala, dACC, and striatum were defined functionally; the hippocampus was defined using the WFU 
Pickatlas.

Statistic type for inference
(See Eklund et al. 2016)

Mean beta estimates extracted from the ROI.

Correction ROI-based analysis.
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